
A Cognitive Hierarchy Model Applied to the Lemonade Game

Michael Wunder1 Michael Kaisers2 Michael Littman1 John Robert Yaros1
1Department of Computer Science, Rutgers University

2Department of Knowledge Engineering, Maastricht University
{mwunder, mlittman, yaros}@cs.rutgers.edu, michael.kaisers@maastrichtuniversity.nl

Abstract

One of the challenges of multiagent decision making is
that the behavior needed to maximize utility can depend
on what other agents choose to do: sometimes there is
no “right” answer in the absence of knowledge of how
opponents will act. The Nash equilibrium is a sensi-
ble choice of behavior because it represents a mutual
best response. But, even when there is a unique equi-
librium, other players are under no obligation to take
part in it. This observation has been forcefully illus-
trated in the behavioral economics community where
repeated experiments have shown individuals playing
Nash equilibria and performing badly as a result. In this
paper, we show how to apply a tool from behavioral
economics called the Cognitive Hierarchy (CH) to the
design of agents in general sum games. We attack the
recently introduced “Lemonade Game” and show how
the results of an open competition are well explained
by CH. We believe this game, and perhaps many other
similar games, boils down to predicting how deeply
other agents in the game will be reasoning. An agent
that does not reason enough risks being exploited by its
opponents, while an agent that reasons too much may
not be able to interact productively with its opponents.
We demonstrate these ideas by presenting empirical re-
sults using agents from the competition and idealiza-
tions arising from a CH analysis.

Introduction
System designers and researchers alike have become in-
creasingly interested in the activities of interacting computer
agents, especially in strategic settings (Niu et al. 2008). The
problems of online auctions, botnets, and mobile network-
ing are just some examples of areas where multiagent com-
puting has arisen as a focal topic. In many cases, strate-
gic reasoning is bounded because of constrained compu-
tation or uncertainty about other agents in the population.
The usual techniques for these situations, such as traditional
game theory and its recently developed cousin, algorithmic
game theory, break down in cases of bounded rationality. In
response, recursive models of players with varying reason-
ing capabilities have been proposed (Vidal and Durfee 1995;
Gal 2006). Empirical competitions in simple games with
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complex dynamics, such as the game Rock-Paper-Scissors,
have been well understood by differentiating levels of rea-
soning (Billings 2000; Egnor 2000).

In traditional game theory, analysts assume that players
have access to unlimited reasoning ability or computational
power, and are able to figure out a strategy that will prevent
any disadvantage in expectation (Smith 1982). Algorithmic
game theorists try to use greedy methods to find approximate
solutions in the form of a system-wide equilibrium given
agents with complete reasoning abilities. Games and com-
petitions without these manageable properties are proliferat-
ing. One recent example is the lemonade game (Zinkevich
2009), which consists of three vendors attempting to maxi-
mize their selling space on a circular beach. A player’s score
only relies on the distance to opponents on either side, yet
the iterated version yields complex interaction patterns.

In recent years, researchers have employed a behavioral
model known as level-k thinking, or a cognitive hierarchy, to
explain findings across a variety of experiments in the field
of economics (Camerer, Ho, and Chong 2004). As the name
implies, a cognitive hierarchy postulates the presence of lev-
els, or steps, that naturally occur in human reasoning.

In this document, we propose a model for games that are
heavily dependent on the types of agents likely to be encoun-
tered, with a special focus on the lemonade game (LG). If
this model is substantially correct, then it means that the con-
test between individual LG strategies is usefully framed as a
contest between levels of reasoning. While this framework
certainly allows for various differences between agents clas-
sified at a certain level, it does specify that the levels present
in a population can exert a bigger effect on the scores than
particular implementation details. In this way, the model is
like a map for LG strategy discovery and analysis.

While we do not arrive at a theoretical solution like an
equilibrium for the lemonade game, we present a way to
structure the likely reasoning of an unknown population.
This model is based on the cognitive hierarchy approach, but
we make some necessary adjustments to deal with multistep
strategies and advanced reasoning. We advocate our method
as a design principle for agents in similar games and situa-
tions. Just as importantly, the model aims to show what to
avoid as the community continues to investigate multiagent
learning practices in this domain.

The next section introduces repeated games, gives the ba-



sic concept of the Cognitive Hierarchy model (CH) using the
example of the p-beauty game, and delineates the lemonade
game rules and basic interaction patterns. The third section
uses CH to derive the game’s fundamental strategies, and
finally experiments show the value of the CH process.

Background
Behavioral economics is a branch of economics concerned
with the psychological biases and cognitive limitations of
participants in strategic interactions. One particular area has
focused on the so-called cognitive hierarchy that appears in
populations playing certain types of games (Camerer 2003).
A famous example of this model in action is in the beauty-
contest game, in which the “judges” get the best reward by
picking the most popular contestant in the pageant (Keynes
1936). In the game theory community, it could refer to any
competition in which a player receives the most benefit from
some position in response to an aggregate social decision. In
the p-beauty contest version, m players submit a number x
from 0 to 100 and the winner is the one who guesses closest
to p times the average value, p

∑m
i=1

xi
m , where 0 ≤ p < 1.

The Nash equilibrium of a p-beauty contest is 0. However,
researchers have demonstrated that groups do not initially
play this result (Ho, Camerer, and Weigelt 1998).

A series of these findings (Costa-Gomes, Crawford, and
Broseta 2001; Wang, Spezio, and Camerer 2009) prompted
economists to propose that people are making decisions
based on a model that combines the concept of base strate-
gies with steps of thinking or reasoning. In this model, play-
ers first identify the most uninformed strategy. They then
proceed to take steps of reasoning in response to that strat-
egy until they have either lost the ability to go further or
assume that not enough rivals will do so to justify the effort.
While the bottom, or base, strategy is usually quite clear, the
idea of a step of reasoning requires clarification. Here, a step
of reasoning is a unit of problem solving, where the problem
is to find the best possible action in response to the likeliest
population that either is known or can be considered. Pure
computational neuroeconomics might define a step of rea-
soning (SOR) as some step of computation made toward the
goal of maximizing reward. In the p-beauty game, the base
strategy is a uniform pick and the average of the base is 50.
Each reasoning step is a simple multiplication of the average
of the previous level by p. In repeated or stochastic games, a
step can be a complicated optimization procedure, depend-
ing on the game and types of other agents. We would add
a focus on new capabilities at each level that derive from
more sophisticated views of the world. The next section will
explain this feature of the model in more detail.

One reason this Cognitive Hierarchy model (CH) may
map into artificial agent design is that programmers share the
same psychological biases. A CH analysis provides a frame-
work to explore the spectrum of potential opposing players.
An accurate model for estimating the most likely strategies
gives a head start to agents built upon that framework. This
approach works best when the base strategies and the rea-
soning step are well defined.

Recently, the lemonade game was introduced to demon-
strate the interaction complexity that can arise from simple
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Figure 1: This figure depicts key strategic patterns of the
lemonade game. Each of the six diagrams refers to a (partial)
joint action, and similarly a strategic move by , expecting
opponents to play and . As the domain is on a ring, the
patterns are rotation insensitive.

rules (Zinkevich 2009). The game is played by three lemon-
ade vendors on an island with n beaches, where typically
n = 12, arranged like the numbers on a clock. Each morn-
ing, the vendors have to set up on one of the beaches, not
knowing where the other vendors will show up on that day.
Assuming the beach visitors are uniformly distributed and
will buy their lemonade from the closest vendor, the payoff
for the day is proportional to the distance to the neighboring
lemonade vendors.

In game-theoretic terms, LG is a 12-action normal form
game on a ring, where the payoff function equals the sum
of distances to the right and left neighboring vendor. As a
corollary, the cumulative payoff of the three players is 24. If
two or three vendors share a spot they share the profit, 6 or
8 each respectively. The only exceptional formation is when
two agents conflict by choosing the same action (Collision),
they receive a reward of 6 and create the most favorable con-
dition for the third agent who receives the maximum of 12.
The game is played repeatedly for T days and the joint ac-
tion is observable. T is set to 100 so that agents can learn
about the opponents’ behavior from previous rounds.

The dynamics of this game are particularly interesting be-
cause it involves a sense of competition, as the gains of one
always have to be compensated by the loss of others, as well
as a sense of cooperation, because two agents can coordi-
nate a joint attack on the third. Figure 1 shows an overview
of the key strategic patterns in the LG. Each agent has to
choose an action, and the simplest move is to stick with the
initial action from then on (Stick). The Equilateral pattern
splits the payoff evenly into 8 for each agent, but from a risk
perspective is dominated by the cooperative action Across.
Once two agents coordinate on the action Across, it leaves
the third agent with a payoff function of 6 for all actions.
This action has been found to be the most frequent and sta-
ble cooperative arrangement in the competition, although a
successful Sandwich gives a higher profit to the cooperat-
ing agents. In particular, Across can be played by with
a non-responsive but predictable player , while the Sand-
wich as a joint action of and usually needs to be ini-



tiated by an Offer, and the second contestant needs to rec-
ognize and respond to the Offer. Note that actually risks
a lower score by playing next to . Furthermore, the vic-
tim can easily notice this attack and escape using another
action. As a result, Sandwich is unstable despite deliver-
ing the near-optimal payoff 11 for each perpetrator and the
minimum payoff 2 for the victim.

In contrast to the p-beauty game, which has a single pa-
rameter to optimize, LG allows for complicated policies that
involve signaling and planning for cooperation. While the
former is more common in the economics literature, games
of the second class are usually investigated in computer sci-
ence, where repeated games are used as a generalization of
Markov decision processes to non-stationary environments
including multiple agents.

Unlike the LG, the p-beauty game has a single Nash equi-
librium where every player submits the number 0. Note that
there is no unique equilibrium in the LG because a player
will get the maximum score as long as he is on the side of
the island with more space. However, as we have already
mentioned, the stable Across pattern has the property that
the players who set up in this way will be in equilibrium
no matter what the third player does. Shifting a player one
spot from Across has the same property but is slightly less
efficient for those two opposing players.

Levels of Reasoning
The lemonade game is an ideal example of competitive col-
laboration. That is, a player able to convince another player
to cooperate with it can achieve a higher average score to the
disadvantage of the third player. Of course, each player has
to choose the more friendly player to attempt to cooperate
with, with the knowledge that those attempts will be tracked
by the other players. Ultimately, the two players who work
together best will achieve the highest scores.

While it appears that players have many repeated turns for
observation and experimenting, in reality many games are
settled in the first several rounds, as agents seek partners and
mutual history is established. Again, cooperation, however
it is defined, is self-reinforcing. Therefore, this game puts a
premium on speed over depth when finding optimal actions.
The advantage of fast movers argues in favor of heuristics
over learned strategies. In addition, if a player has an idea
about which other strategies to expect in the population, it
will provide additional benefit.

In the LG, the defining characteristic of level k does not
exist at levels 0...k − 1, and emerges as a direct response to
the vulnerabilities of level k − 1. Due to the three-player
structure of the LG, there are two ways to determine how
a new level arises from the previous one. In one case, a
single player at level k is looking to optimize against two
players at level k − 1. In the other, two level k strategies
try to cooperate against one player at level k − 1. There is
a zero-sum game played between a player and the other two
agents so both problems are relevant for analysis. We will
define a step of reasoning (SOR) in the LG to be a policy that
maximizes the average of the first case first, and the second
next if there are several possible strategies available.

Table 1: Reasoning levels
Level Meta-strategy

L0 Stick with probability x, random action otherwise
L1 Play at position Across from most consistent player
L2 Stick unless losing, may contain elements of L1
L3 Sandwich with L3 vs. Stick, plus elements of L2

As with an inductive proof, the reasoning level 0 (L0)
forms the basis for iterated strategies of the rest of the hier-
archy (see Table 1 for examples of levels). First, these base
strategies need to be defined, and subsequently the higher
layers can be constructed by iteratively applying the reason-
ing step. In many games, a base strategy of a single uniform
distribution over all actions suffices. In repeated games like
this one, there exists another trivial action Stick, which leads
to the basic notion of stickiness in a strategy. Stickiness, as
measured by the likelihood that a player will remain in place,
plays an important role in this game because it makes move
prediction very simple. As such, it deserves a place among
base strategies.

The general base level L0, therefore, is composed of uni-
form action and sticky action, with a parameter x to con-
trol the relative importance of each. The L0 strategies are
defined by an initial random action and the probability x to
Stick with the previous action in the following turn, or other-
wise pick a new random action. For x = 0 or x = 1 L0 takes
the form of a uniformly random (L0-U) or constant strategy
(L0-C) respectively. Because this value x is unknown to op-
ponents, it must be estimated over several time periods. De-
fine x̂ as the current estimate of x for an opponent. We will
not require x to be fixed, but in keeping with the tendencies
of LG and empirical observations it is expected (though not
required for our analysis) to rise over time.

We propose the three additional levels in Table 1, which
arise from calculating iterated best responses in LG. The lev-
els function as the main building blocks, or meta-strategies,
available at the start of a session of repeated LG. Each suc-
cessive level responds to the levels below it. As a result,
each lower level is open to an attack by some combination
of higher strategies. We can also define these levels as new
capabilities opening up in response to new challenges. We
might consider that L1 views a world where opponents do
not respond to others’ actions and acts accordingly. L2 an-
ticipates that others react quickly, while L3 recognizes the
potential of advanced coordination.

Define xi as the value of x for player i. V (6) is the value
of playing action 6 or at location 6. V (Across(i)) is the
value of playing Across player i. The optimal strategy for
player C when faced with two L0 players, A and B, is to
play Across from the player with the higher x if that value
of x is close to 1. In other words, we want to show how the
level 1 strategy arises when faced with a reasonable degree
of certainty that one of the players will Stick at its prior lo-
cation. We will assume a high x for at least one player so
that the best response is clear.

Consider xA > xB without loss of generality, with A
playing action 0. If xA = 1, then C’s payoffs for action n



and uniform random action of B are:

V (n) = E[score|Location(A) = 0]

V (n) =
1

12
(6) +

1

12
(12) +

max(0, n− 1)

12
(12− n

2
) +

11− n
12

(6 +
n

2
)

The first term is the event that B lands on C. The second term
is the event that B lands on A. The third term is the event that
B lands in the short distance between A and C, and the fourth
term represents when B lands on the large distance side.

V (0) =
11

12
(6) +

1

12
(8)

= 6.17

V (1) =
1

12
(6) +

1

12
(12) + 0 +
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12
(6 +

1

2
)

= 6.92

V (2) =
1
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(6) +

1

12
(12) +

1

12
(12− 2

2
) +

9

12
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2
)

= 7.67

V (3) =
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(6) +

1
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(12) +

2
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(12− 3

2
) +

8

12
(6 +

3

2
)

= 8.25

V (4) =
1
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3
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(12− 4

2
) +

7
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2
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= 8.67

V (5) =
1
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2
) +

6
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2
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= 8.92

V (6) =
1

12
(6) +

1

12
(12) +

5

12
(12− 6

2
) +

5

12
(6 +

6

2
)

= 9

Therefore, the move Across from a player who remains in
place will average 9 when the other player is random. Since
this score is the best to be done against a uniform player, it
is an optimal strategy to set up Across from a player if there
is a reasonable confidence that it will not move away.

If xA < 1, the strategy Across(A) may still be optimal in
relation to a low xB . The next actions depend on the initial
locations of A and B. Imagine A plays 0 and B plays 11.
Then Across(A) is optimal either if both A and B Stick or
both are random next turn. The true comparison lies when
only one Sticks.

V (6) = 9xA(1− xB) + 8.92xB(1− xA)
V (5) = 8.92xA(1− xB) + 9xB(1− xA)
V (4) = 8.67xA(1− xB) + 8.92xB(1− xA)

...

The other actions have worse payoffs than V(4) and are
therefore suboptimal. We know that xA(1− xB) > xB(1−
xA), so V(6) is optimal.

Imagine A at 0 and B at 10.

V (6) = 9xA(1− xB) + 8.67xB(1− xA)
V (5) = 8.92xA(1− xB) + 8.92xB(1− xA)
V (6) > V (5)

0.08xA(1− xB) > 0.25xB(1− xA)
xA(1− xB) > 3.125xB(1− xA)

xA
1− xA

> 3.125
xB

1− xB

If x̂A
1−x̂A

> 3.125 x̂B
1−x̂B

, V(6) is optimal. We can continue
in this manner for all initial positions. This strategy in fact
requires a degree of sophistication, in that C must estimate
the current values of x̂A and x̂B . Across(A) works as long
as xA is much higher than xB , or if recent observations pro-
vide evidence that x̂A ≈ 1, discounting the weight of the
early rounds.

L1 is constructed to maximize reward in the world of L0s
that it perceives. Although no player in the L0 population
will respond to the actions of L1, L1 can still prosper if it
identifies the better player to play Across. Notice that this
strategy can apply to a range of situations, such as when the
other players are reasoning. This L1 strategy succeeds as
well in the case where two L1 agents meet an L0 strategy
with x < 1, as long as the L1s end up Across from each
other. In fact, this case cements the above strategy because
if C is faced with a L1 A player, C will wish to appear a bet-
ter partner to prevent A from exploring B as a partner. This
bit of reasoning adds to the sophistication of the L1 agent,
but it also points to the elegance and symmetry of Across as
a mutually beneficial strategy. While two opposing L1 play-
ers will do well against a uniform or semi-random player,
the strength of L1 comes from the ability to quickly identify
partners regardless of reasoning ability.

However, the narrow focus of L1 does create a weakness.
Simply put, a single constant player (L0-C) has the advan-
tage against two L1s because the L1s must move to imple-
ment their strategy. It is likely that at least one of them will
jump across from L0-C. At that point, the other L1 is stuck,
as it cannot take any action to get itself more than 6. In re-
ality, the most likely situation is that both players Collide
across from L0-C. The proof is that at each timestep, both
players choose a partner to go Across. If one L1 chooses
the other, then there is some chance that the other L1 moved
also, and therefore both have to choose again. For every step
the players are not yet partners, the likelihood of ending up
across from L0-C increases. This weakness of L1 creates an
opening for L2.

Since stickiness is prized by the L1 strategy, L2 pursues
the strategy of playing Stick for as long as possible, even
if no player is Across. If L2 can stay still long enough for
two L1s to both select it as a partner, it will derive enormous
benefit as the partner of both. While that outcome would be
the best case scenario, L2 cannot ignore L0 either, and so
should employ some moving ability. L2 therefore will re-
main constant unless there is some reason that it should not,
such as getting stuck next to another constant or some other



losing situation. The threshold for when to move, as well as
the action to take, are design decisions that can be made any
number of ways. Similar logic confirms this strategy for the
case of two L2s versus one L1. If an L2 waits for some L1
to move Across from it first, it will wish to remain as stable
if there is another L2, also. There is not much cooperation
between L2s that can occur in this case.

The L2 strategy also contains a weakness. If it remains
fixed for too long, it can suffer enormous losses in the event
that the other two players can manage to team up against it
by pinching the L2 in a Sandwich attack. We will consider
L3 to be a player that is able to engage in this attack against
fixed players with another L3. While an L2 could jump out
of the middle of a Sandwich, the L3s might then consider
the Sandwich attempt an excellent bonding experience and
therefore use it to guarantee partnering with each other. In
that case, the L3s still benefit at the expense of the L2. In ad-
dition, the constant strategy by definition cannot move and is
therefore the perfect target for this kind of attack. In essence,
the strength of L2, its consistency, is used against it by a pair
of L3s. If the Sandwich attack works, the L3s will avoid the
fate of two L1s against L0-C.

This strategy has an expectation of 11 for as long as the L2
(or L0-C) victim does not move and then 9 for the rest of the
game, against a non-static L2. As such it is the highest that
can be achieved against an L2 player. With an L2 opponent
and equal chance against L2 and L3 for the other, it is best
to play the Sandwich Offer against an L2. A single L3
against two L2s has the advantage of first motion, so even
if its Sandwich fails, it can fall back into L1 mode with a
partner of its choice. Therefore the Sandwich passes this
test as well.

Sandwich is revealed as a cooperative move in a sub-
game composed of two players, A and B, and a third fixed
player C. The pure defensive, and least risky, move for A is
to go across from C. Thus, the Sandwich against C is analo-
gous to a cooperative game for A and B, but it requires both
players to notice that fact. The main feature of L3, in ad-
dition to the Sandwich move, is its tolerance of risk for the
sake of deeper coordination. While L3 performs well against
two L2s, a Sandwich offer can be marked by a shortsighted
L1 agent as a noncooperative move if it is not aware of this
subgame. The main weakness of the L3 characteristic lies
with the risk that the players B and C are seeking a reli-
able Across partner instead of a Sandwich partner. Only
one submission of the LG competition reached this level of
reasoning, hence further levels are omitted in the analysis.
As a rule, a well-implemented level-k strategy can perform
moderately well against previous levels, even if it is not op-
timized against all possible populations with any particular
average level of reasoning.

Experimental Setup and Results
Up to this point, the levels in LG are just thought experi-
ments. In fact, the basic elements of the CH account arose
in a group of agents developed independently. This section
shows the viability of the CH analysis by applying it to the
open LG competition of Jan. 2010.

Tournament
The final competition consisted of a round-robin tournament
of the lemonade game and the average score is taken for
the purpose of ranking. The contestants and their scores are
listed in Table 2.

Analysis of Strategies
Each contestant is evaluated over many games against a pop-
ulation of idealized agents to determine its characteristic rea-
soning level. The results are further supported by correlating
the tournament outcomes of the competitors and their CH
idealizations.

To apply the model to real agents, we must first clas-
sify each strategy by level. If a CH model is a good fit
for LG, populations consisting of agents that correspond to
a similar mix of levels should behave in roughly the same
way as their idealized counterparts. Since each level has its
unique strengths and weaknesses, performance depends on
the makeup of the population and specifically the relative
frequency of each level. For the purposes of this paper, we
classify a strategy by inspecting how it scores against ideal-
ized strategies from each of the levels we identified.

Consider τ to be the average reasoning level L in the pop-
ulation. One way to highlight crucial properties of a given
agent is to play it against populations composed of each
level, or weighted mixes of adjacent levels. We found the
clearest classification method by setting the level frequen-
cies of a τ -population by linear interpolation of the integer
levels immediately higher and lower. So, a population with
a τ of 1.2 would be made of 80% L1s and 20% L2s. 1 That
is, each of the two rival agents in each trial would be L1
with an 80% probability, and L2 with 20% probability. Any
method that provides good separation would be adequate to
the task of sorting individual strategies. The exact propor-
tion of the levels at each point on the line does not matter
as much as the ability to pinpoint how an agent does against
two adjacent levels at once. While it might also make sense
to inquire about how a player performs against non-adjacent
levels, like a mix of L0 and L3, it is not necessary and more
difficult to interpret.

As we vary τ according to this method, the population
ratio shifts and so do individual agent scores against that
population. The expected performance for a strategy at level
k as τ rises would be to peak at some τ < k and then de-
cline at a rate depending on the strategy’s compatibility with
others like it. Figures 2 to 4 demonstrate this trend for two
sets of agents, the actual official competition conducted with
nine participants in January 2010 and idealizations of these
contestants. See Tables 2 and 3 for the agent descriptions.

Using the above criteria, we can classify each strategy
with an estimated level (EL), while remembering that some
agents do not explicitly execute any of the level-based strate-
gies, and others incorporate some mix between them. Be-

1A more common method for estimating level-k frequency
f(k) in CH analysis uses the Poisson distribution, such that f(k) =
e−τ τk

k!
. This method does not highlight the diverse strategies of

LG and so is less convenient than interpolation, which has similar
qualities.



Table 2: A list of official tournament submission strategies including their tournament average payoff per day (Score). An
arrow indicates that the agent starts at one level, but sometimes transitions to a different one.

Name (Team) Score Est. Level Description
EASquared (Southampton) 8.62 EL2→ EL1 Attempt to get Across from sticky opponents or

train followy opponents to play Across from it.
ModifiedConstant (Pujara) 8.52 EL2 Randomly pick an initial location then Stick. If a number of

turns with low utility occur, randomly pick a new location.
CoOpp (RL3) 8.51 EL1→ EL3 Continuously attempt to engage in Across.

Attempt Sandwich in some situations.
MyStrategy (Waugh, CMU) 8.20 EL0→ EL1 Recursively compute best responses assuming

everyone else plays best responses.
ACTR (Lebiere, CMU) 8.15 EL1↔ EL2 Cycle 3 strategies: 1) Stick, 2) Across weakest opponent,

3) Across strongest opponent.
GreedyExpectedLaplace 7.75 EL0→ EL1 Using Laplace Smoothing, predict each agents location
(Schapire) and pick best reply given these opponents.
BrownLemonade (Brown) 7.67 EL0→ EL1 Use an ensemble of predictors to guess opponents’ next moves

and pick location with optimal utility.
FrozenPontiac (Michigan) 7.58 EL0→ EL1 Compute probabilities that agents play Stick, ERMS, rational

(furthest from opponents) or n2p (next to the other opponent)
and find the optimal location given these probabilities.

GregStrategy (Kuhlmann) 6.99 EL0 Move to a uniformly random location every turn.

Table 3: A list of idealized testing strategies.
Name Level Description
QLearner L0→L1 Use simple Q-learning to choose Stick or Across opponent one or two.
OppositeCommonAction L1 Pick the location Across from the historically most frequently used location.
StickyOpposite L1 Pick a random partner to play Across and Stick until they move.
OppositeTheLeader Constant L2 Stick until a threshold of loss is experienced,

then move Across the current point leader (unless it is us).
SeclusiveConstant L2 Stick until a threshold of loss is experienced,

then move to a location furthest from opponents.
PinchTheConstantOrElse L3 If a fixed player is identified, aggressively attempt Sandwich offer. If the

attempt fails, punish the non-fixed player by playing Across from the fixed one.
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Figure 2: This graph shows how L0 (uniform or semi-
uniform action) agents perform against various level combi-
nations. From an average score around 8 against other L0s,
these players drop against the higher, or faster, reasoners.

cause of the ambiguity of classification, and the variety of
strategies allowed at each level, there are many possible pop-
ulation configurations for evaluation purposes. We follow a
two-stage process for classifying agents by level. First, we
build a sample population of representative agents for each
level, and show how the level-by-level performance varies
in a way predicted by the cognitive hierarchy model. Next,
we play the competition agents against this population, and
approximate their level by minimizing the sum of squared
error of each agent’s performance from the average perfor-
mance of some entire idealized level. With these estimates
it is possible to run a new competition to check if idealized
players perform like the actual competitors. We used an iter-
ative process like this one to design our own challenger for
the actual competition.

It is possible that a more complicated agent may some-
times switch between the behaviors predicted at separate
levels. That possibility does not undermine the fact that its
overall reward is explained by its overall behavior, which
derives from its mixture of levels. Since this behavior de-
pends on the population an agent faces, it is meaningful to
ask about the “levelhood” of its distribution of play. So an
agent may perform like one level against one population, but
very different from that level against another population. If
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Figure 3: This graph shows the profiles of L1 and L3 agents.
The L1 strategy starts off well but declines against other
L1s, and then does well against mostly L2 populations. The
L3 profile, while similar to L1, does much better against
constant-based players and other L3s, as the model predicts.

it fits another idealized level more consistently over all pop-
ulations, it is considered to be more in line with that level.

The graphs demonstrate the performance of several level-
specific strategies. The performance of each idealization is
different enough to provide good contrast. Figure 2 shows
how the L0 idealization and three below-average contestant
strategies perform at a population averagin g L0 with a score
around eight and drop rapidly against higher population lev-
els. The higher level players also show the expected results.
In Figure 3, the performance of L1 starts relatively high and
drops as L1s become more common, then peaks again at
a population of all L2. The L2 players of Figure 4 rise to
a peak against an average reasoning level of L1, then drop
swiftly. The L0-C (Constant), is included with the L2s be-
cause it shows a similar pattern. Notice that, for higher lev-
els including mostly L3 players, L2 does not suffer as badly
as L0-C. Finally, the L3 players roughly track the L1s, and
furthermore do very well against L0-C or the mostly con-
stant L2 players. These empirical results partially confirm
that the level definitions were broadly correct, as the peaks
and valleys occur right on target where the model predicts.

Our generic method classifies agents submitted to the LG
competition with varying accuracy. Second place Pujara’s
agent behaves as a textbook EL2 (Figure 4). Several contes-
tants score near the EL0 range (Figure 2). While the rest are
harder to classify, the model still works as it should.

For example, the third place player RL3’s agent tracks
very close to EL3 (Figure 3). Its mix of level-based strate-
gies causes it to begin with a chance of Stick, but then
quickly switch to find a good opposite-based partner. Once it
is Across from another participant, RL3 keeps track of how
committed the partner is to remaining Across from it. In the
event that RL3 ends up Colliding in the space Across from a
constant player, it becomes open to Sandwich. While RL3
only intiates a Sandwich offer a quarter of the time, it is
enough to qualify partially as an EL3 player, although its
default strategy is EL1.

The winning Southampton agent (Figure 4) starts as a
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Figure 4: This graph shows how L2 agents perform against
various populations drawn from across levels. These agents
do best against a mainly L1 population, but decline there-
after, and especially facing L3s.

constant, and then initiates an L1-based strategy. There-
fore, its performance and level behavior depend on whether
it faces patient EL1s like itself. This version of delayed
EL1 is meant to wait out impatient L1s, but still receive the
benefit of EL1 action against everyone else. Against pure
L1 idealizations, this strategy appears to score like an EL2.
However, several clues give away its latent EL1 tendency,
especially its strong performance against L0s and L2s, and a
peak closer to τ = 0.8 instead of τ = 1 for well-fitting EL2s
like Pujara. Figure 4 makes it clear why Southampton did
well against this group of competitors, but Pujara would do
better against an all L1 population. In the same way, RL3
would do better against a mix of L2s and L3s.

Finally, the remaining agents fit the scoring performance
of either EL0 or EL1 (Figure 2). The Waugh entry at-
tempts an advanced hierarchy-based best response algo-
rithm. While it was the only agent to explicitly attempt
to measure the level of others, the shortage of good data
early on leaves this approach at a disadvantage. Several
prediction-based learners apply a variety of methods to clas-
sify opponents, and thus try to outwit them. Unfortunately,
by the time the learners find an optimal response, it is too
late because the faster players have already matched up with
each other, leaving out the slow learner. The end result is
that while it is clear these agents are non-random, the ob-
served performances roughly track those of an almost ran-
dom player, EL0.

Figure 5 shows a mock tournament between the ideal-
izations corresponding to the submitted competitors. These
simplistic agents replace the submissions according to esti-
mated level. As the outcomes of the two tournaments show,
there is a close correlation between the scores of the submit-
ted players and their level-based substitutes — a Pearson’s
r of 0.975. In fact, the ordering is almost identical, with a
Spearman’s rank correlation of 0.95. Hence, the Cognitive
Hierarchy model provides a useful tool for understanding
and predicting the performance of strategies in the LG.
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Contestant/Idealization Comparison
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Brown
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L2 Opposite-the-Leader Constant

L0 50% Constant, 50% Uniform

L0 75% Constant, 25% Uniform

L1 Opposite-Most-Common-Action

L2 Seclusive Constant
L1 QLearner

L1 Sticky Opposite

L0 90% Constant, 10% Uniform

L0 Uniform

Figure 5: Comparison between the January 2010 competi-
tion contestants and corresponding idealizations. Each line
segment connects the data point from the actual competition
with the simulated result.

Conclusion
This article has introduced a Cognitive Hierarchy analysis
for repeated games and applied it to the Lemonade Game
competition. The high correlation between the mock tour-
nament of representatives from the CH levels and the actual
competition shows that the essence of the competitors has
been captured by their CH idealization. In the competition,
simple heuristics outperformed intricate learning schemes,
suggesting that CH analysis might be preferable to domain-
general best responses in strategic interactions. LG requires
strategies to trade off speed and the dependence of reason-
ing on data, or depth. Those participants who opt for too
much depth over rapid responses suffer against more struc-
tured strategies. Figure 5 is not meant to show the futility
of learning in LG, but rather that players must employ some
basic heuristics in the early stages of a game. If they do
not, they risk getting classified as the less responsive, consis-
tent, or cooperative partner. Despite the difficulty of behav-
ior forecasting, there is no question that learning can play a
role, especially among higher level strategies. However, that
learning needs to take place in the proper space, or else a
strategy will not have the capacity to react to basic heuris-
tics. The top three players did adapt somewhat in response to
their opponents. They did so by recognizing that they were
not playing against distributions like those found in single-
agent domains, but other players who understood the rules
and were prepared to leverage them against slower players.

In sum, the CH analysis achieves good predictions of the
strategies’ performances. Furthermore, it has revealed char-
acteristic properties of the LG. Future work will aim to show
its applicability to further domains and establish the method
as a framework to understand multiagent games of this kind.
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