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1. INTRODUCTION
This article shows that seemingly diverse implementations

of multi-agent reinforcement learning share the same basic
building block in their learning dynamics: a mathematical
term that is closely related to the gradient of the expected re-
ward. Specifically, two independent branches of multi-agent
learning research can be distinguished based on their respec-
tive assumptions and premises. The first branch assumes
that the value function of the game is known to all play-
ers, which is then used to update the learning policy based
on Gradient Ascent. Notable algorithms in this branch in-
clude Infinitesimal Gradient Ascent (IGA) [7], the variation
Win or Learn Fast IGA (WoLF) [3] and the Weighted Pol-
icy Learner [1]. The second branch of multi-agent learn-
ing is concerned with learning in unknown environments,
using interaction-based Reinforcement Learning, and con-
tains those algorithms which have been shown to be formally
connected to the replicator equations of Evolutionary Game
Theory. In this case, the learning agent updates its policy
based on a sequence of haction, rewardi pairs that indicate
the quality of the actions taken. Notable algorithms include
Cross Learning (CL) [4], Regret Minimization (RM) [6],
and Frequency Adjusted Q-learning (FAQ) [5]. This arti-
cle demonstrates inherent similarities between these diverse
families of algorithms by comparing their underlying learn-
ing dynamics, derived as the continuous time limit of their
policy updates. These dynamics have already been investi-
gated for algorithms from each family separately [1, 2, 3, 5,
6, 7], however, they have not yet been discussed in context
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of the relation to each other, and the origin of their simi-
larity has not been discussed satisfactorily. In addition to
the formal derivation, directional field plots of the learning
dynamics in representative classes of two-player two-action
games illustrate the similarities and strengthen the theoret-
ical findings.

2. ANALYSIS
This section presents an overview of the dynamics of the

di↵erent algorithms, and highlights their similarities. The
discussion is limited to the domain of two-player normal
form games for sake of clarity. In these games the payo↵
function can be represented by a bi-matrix. A general pay-
o↵ matrix for two-action games, and two specific examples
can be denoted as follows, where player 1 and 2 select row i
or column j and receive a reward of Aij or Bij respectively:
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The dynamics within two-player two-action games have been
studied individually for several algorithms. Let x and y
denote the probability of selecting the first action by the
first and second player respectively. Furthermore, ↵ is the
learning rate, h = (1,�1), V is the value function and xe

is a probability belonging to a Nash equilibrium. FAQ also
has a temperature parameter ⌧ that controls the balance
between exploration and exploitation. Unifying the notation
from literature and factoring out the common gradient g =⇥
yhAhT + A

12

� A
22

⇤
the learning dynamics ẋ for player 1

can be summarized as follows:

Alg. ẋ (change in probability of first action)
IGA ↵g

WoLF g ·
⇢

↵min if V (x, y) > V (xe, y)
↵max otherwise

WPL ↵g ·
⇢

x if g < 0
(1� x) otherwise

CL ↵x(1� x) g
FAQ ↵x(1� x)

⇥
g ·⌧�1 � log x

1�x

⇤
RM ↵x(1� x) g ·

⇢
(1 + ↵xg)�1 if g < 0
(1� ↵(1� x)g)�1 otherwise

More generally, the first and second players’ policy will be
denoted as ⇡ and � (i.e., ⇡

1

= x and �
1

= y in two-action
games). The dynamics are illustrated in Figure 1 and are
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Prisoners’ Dilemma
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Matching Pennies
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Figure 1: This figure shows the learning dynamics of the various algorithms in the Prisoners’ Dilemma and
Matching Pennies. The dynamics of RM are visually indistinguishable from CL in this scenario. The Nash
Equilibria are indicated with ⌦.

now decomposed qualitatively for the class of two-agent nor-
mal form games. Let ei denote the ith unit vector and let n
be the number of actions. Gradient Ascent is defined using
the orthogonal projection function �, which projects the
gradient onto the policy simplex thereby ensuring a valid
policy (i.e., 8⇡i : 0  ⇡i  1).

�⇡i  ↵
@V (⇡, �)

@⇡i
= ↵ lim

�!0

[⇡ + �(�ei)] A�T � ⇡A�T

�

= ↵�(ei)A�T = ↵

 
eiA�T � 1

n

X
j

ejA�T

!
In contrast, CL, FAQ and RM ensure validity of the policy
update by making the update rule proportional to ⇡. In-
corporating proportional updating into the gradient-based
policy update rule yields ⇡i(t + 1) ⇡i(t) + ⇡i

@V (⇡,�)

@⇡i
.

In order to incorporate this di↵erent approach, the projec-
tion function � needs to change as well in order to properly
map the weighted gradient. Intuitively, this can be achieved
by using a weighted mean instead of a standard mean, such
that �̂(⇣, w) = ⇣ �

P
j wj⇣j where w is a normalized weight

vector. Using w = ⇡, this leads to the following dynamics:

⇡̇i = ⇡i lim
�!0

h
⇡ + �̂(�ei, ⇡)

i
A�T � ⇡A�T

�

= ⇡i�̂(ei, ⇡)A�T = ⇡i[eiA�T � ⇡A�T ]

These resulting dynamics are exactly the dynamics of Cross
Learning, showing that it is equivalent to Gradient Ascent
with proportional updates. This provides a strong link be-
tween the two families of algorithms, gradient ascent on the
one hand and independent multi-agent reinforcement learn-
ing on the other.

3. CONCLUSIONS
The main contributions can be summarized as follows:

First, it is shown that the replicator dynamics are a prime

building block of various types of independent reinforcement
learning algorithms, such as Cross Learning, Regret Mini-
mization, and Q-learning. Second, the replicator dynamics
are shown to relate to the gradient of the expected reward,
which forms the basis of Gradient Ascent. Both the replica-
tor dynamics and gradient ascent have an update rule that
is based on the di↵erence between the expected reward of
an action and the average expected reward over all actions.
The only di↵erence is how each action’s update is weighted:
gradient ascent assumes uniform weights as given by the
gradient, whereas the replicator dynamics use the action-
selection probabilities as weights.
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