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Abstract. In this paper we compare state-of-the-art multi-agent rein-
forcement learning algorithms in a wide variety of games. We consider
two types of algorithms: value iteration and policy iteration. Four charac-
teristics are studied: initial conditions, parameter settings, convergence
speed, and local versus global convergence. Global convergence is still
difficult to achieve in practice, despite existing theoretical guarantees.
Multiple visualizations are included to provide a comprehensive insight
into the learning dynamics.

1 Introduction

This article surveys the dynamics and performance of state-of-the-art value itera-
tion and policy iteration reinforcement learning algorithms in multi-agent games.
In particular this work studies initial conditions, parameter settings, convergence
speed, and local versus global convergence in a wide variety of cooperative and
competitive games.

Single-agent reinforcement learning (RL) has been studied extensively in the
past [3,13]. It guarantees convergence to the optimal policy assuming sufficient
learning cycles and a stationary environment.

Learning and adaptation in a multi-agent context recently has gained
a great deal of interest in the Artificial Intelligence research community
[1,6,10,11,12,16,4,17,20]. Accomplishing a certain task in highly uncertain en-
vironments, in which multiple agents operate, calls for multi-agent learning
techniques. These agents involved are not only situated in a non-stationary
environment but also need to deal with incomplete information and commu-
nication limits. In such non-stationary environments the Markov property does
not hold which makes all proofs of convergence inapplicable when considering
algorithms from single-agent learning based on the Markov assumption.

Reinforcement learning techniques are subdivided in value iteration and policy
iteration. Q-learning and learning automata are examples of each class respec-
tively. Value-based learners estimate a state-action value function that deter-
mines the utility of performing a given action in a given state [13]. Once the
outcome is established the value function is used to derive a policy that de-
scribes the behavior of the agent. Contrary to the value based approach, policy
iterators as learning automata learn directly in the policy space.
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The remainder of this paper is organized as follows. Section 2 introduces the
state-of-the-art learning algorithms. Section 3 explains the wide variety of games
on which the algortihms are tested and concisely explains concepts such as Nash
equilibrium and Pareto optimality. We continue in Section 4 with an elaboration
on the performance criteria and the method of visualizing the learning dynamics.
Section 5 covers the obtained results. A discussion and future research opportu-
nities follow in Section 6. Section 7 concludes the article.

2 State-of-the-Art Learning Algorithms

In this section we shortly describe two different multi-agent reinforcement learn-
ing algorithms, viz. value based learners and policy based learners.

The value iteration reinforcement learning algorithms considered are
Q-learning and two recent adaptations, i.e., Lenient Q-learning and
FMQ-learning [4,7,8]. The policy iteration algorithms considered are Learning
Automata and a number of its variants [6,15]. In particular finite action-set learn-
ing automata (FALA) and parameterized learning automata (PLA) are studied.

2.1 Value-Based Learners

We start by explaining independent Q-learning, because this is the basis of state-
of-the-art value-based algorithms.

Q-Learning. Q-learning was initially introduced for single-agent environments.
Each learning step refines a utility-estimation function (the value function) for
state-action pairs and generates a new policy from the estimated values to draw
the next action to execute. The algorithm bootstraps its estimate for the state-
action value Qt+1(s, a) at time t + 1 upon its estimate for Qt(s

′
, a

′
) with s

′
the

state where the learner arrives after taking action a in state s:

Qt+1(s, a) ← (1 − α)Qt(s, a) + α(r + γ maxa′Qt(s
′
, a

′
)) (1)

with α the usual step size parameter, γ a discount factor and r the immediate
reinforcement.

In the single agent case this algorithm is able to learn optimal behavior in
stationary environments [19]. The choice of the action selection mechanism is of
utmost importance: it generates actions given the estimated state-action values.
An ε-greedy action selection assigns the best action with probability (1 − ε) and
some random action with probability ε.

With the Boltzmann distributed exploration mechanism, an action is selected
with a probability given by:

pj =
eQi(sj)·τ−1

∑

k

eQi(sk)·τ−1

where an initially high temperature τ promotes exploration and decreasing tem-
perature over time leads to strong exploitation in the final phase.
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iteration t
T 10 -10 - - -
M 0 7 0 6 0
B 5 0 0 - -

iteration t + 1
T 10 -10 - - -
M - - - - -
B 5 0 0 - -

Fig. 1. Lenient Q-learning reward register for L = 5, example from CG. Q-value of
M is updated with ri = 7, maximum of five rewards (left). The next step clears the
register (right).

Convergence guarantees are usually lost in multi-agent environments, since
other agents’ actions can make the environment appear as non-stationary from
the viewpoint of a single agent. Still it is possible and sometimes even useful, as
we will show later on, to use Q-learning in a multi-agent environment. Agents
are called independent when it assumed that they can neither observe the other
agents actions nor the rewards they received for them; the agents only act upon
the experience collected by experimenting with the environment.

Lenient Q-Learning. In a cooperative multi-agent learning environment it is
a good idea to forgive mistakes, especially in the initial learning period. Con-
sider the example of learning in soccer as in [7]. In the initial phase of learning
both agents lack the skill for good actions, so even a perfect forward pass may
frequently be not rewarded. This leads to the agents converging to actions that
work well with a variety of opponents’ strategies but it often results in subopti-
mal behavior.

In order to handle this problem lenient Q-learning collects L rewards for an
action before it updates the estimation based on the maximum. Lower rewards
are discarded and only the highest reward is used for the update which implies
that only 1

L · iterations learning steps are executed. Figure 1 depicts the update
schematically.

For a detailed description of this algorithm we refer to [7,8].

FMQ-Learning. The FMQ - learner keeps track of the highest reward for each
action and its frequency so far [4]. It is used to alter the policy generation which
is not based on the Q-values anymore, but on the function ev(Qi(sj)). Let F be
the parameter that describes the persistence to seek the maximal encountered
reward r∗i (sj) that was observed with frequency fi(sj) so far.

ev(Qi(sj)) = Qi(sj) + F · f(sj) · r∗i (sj)

The higher F the more the algorithm will alter the policy. This variation works
best in combination with another FMQ learner; the ideas is that policies quickly
agree on an optimum even if it is surrounded by penalties as it is in the climbing
game. If F is large it enforces a quick decision for one action.

2.2 Policy-Based Learners

Rather than building estimated values for states or state-action pairs, policy-
based reinforcement learners directly search the policy space for the optimal
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policy. The two policy-based learners that are considerd in this study are both
learning automata algorithms, i.e. finite action-set learning automata (FALA)
and parameterized learning automata (PLA). Both are model free, stateless and
independent learners. While these restrictions are not negligible, they allow for
simple algorithms that can be discussed analytically. Convergence for learning
automata in single and specific multi-agent cases, such as games, has been proved
in [5].

Finite Action-Set Learning Automata. The class of finite action-set learn-
ing automata (FALA) considers only automata that optimize their policies over
a finite action-set A = {1, . . . , k} with k some finite integer. One optimization
step, called epoch from here on, is divided into two steps: action selection and
policy update. At the beginning of an epoch t the automaton draws a random
action a(t) according to the probability distribution π(t), called policy. Based
on the action a(t) the environment responds with a reinforcement signal r(t),
called reward. Hereafter the automaton uses the reward r(t) to update π(t) to
the new policy π(t + 1).

The update rule for FALA is given below.

If i = a(t) then

πi(t + 1) = πi(t) + αr(t)(1 − πi(t))
− β(1 − r(t))πi(t)

otherwise

πi(t + 1) = πi(t) − αr(t)πi(t)

+ β(1 − r(t))[(k − 1)−1 − pi(t)]

(2)

Here α and β are in [0, 1] are the reward and penalty parameters respectively.
Depending on α and β, the update scheme is referred to as linear reward-penalty
(LR−P ) if α = β, for β = 0 it is called linear reward-inaction (LR−I), and if β is
chosen to be small compared to α it is called linear reward-ε-penalty (LR−εP ).

Assuming that r is continuous (called S-model [5]) and in the range [0, 1],
(2) does indeed give a probability distribution satisfying the following two con-

straints:
k∑

i=1

πi(t + 1) = 1 and ∀i πi(t + 1) ∈ [0, 1].

Parameterized Learning Automata. A learning automaton following the
update rule given in (2) is only guaranteed to converge locally [15]. In order to
find the global optima the learning algorithm has to be refined.

One solution to this problem is adding a randomization term to the learning
rule. Superimposing noise directly on the probability distribution would violate
the constraints. Therefore the algorithm presented in [14] uses a probability
generating function g mapping an internal state vector u to a valid probability
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distribution π. This class of algorithms is called parameterized learning automata
(PLA). The update rule from [14] for PLA simplifies to

ui (t + 1) = ui (t) + αr (t)
δ ln g

δui
(u (t) , a (t))

+ αh′ (ui (t)) +
√

αsi (t)
(3)

where

h (x) =

{−K (x − L)2n x ≥ L
0 |x| ≤ L

−K (x + L)2n
x ≤ −L

(4)

and h′(x) = δh(x)
δx . Furthermore α is a positive learning parameter and si (k) is

a set of IID random variables drawn from a normal distribution with zero mean
and variance σ2.

The difference u (k − 1) − u (k) is composed of three terms, a gradient, a
bound, and a random term. The gradient term includes the probability gener-
ating function given by

g (u, i) =
exp ui∑k

j=1 exp uj

(5)

According to π an action a(t) is selected at every epoch t. The second term uses
function h to ensure that the state vector remains within the bound |u| ≤ L.
Constants L, K, and n are all positive; L and K are real values whereas n is an
integer. The last term superimposes noise to prevent the algorithm from getting
stuck in local optima.

Next, Definition (5) is used to work out the gradient in (3):

δ ln g

δui
(u (t) , a (t)) =

δ

δui
ln

(
expua(t) (t)

∑k
j=1 exp uj (t)

)

=
δ

δui

⎛

⎝ua(t) (t) − ln

⎛

⎝
k∑

j=1

exp uj (t)

⎞

⎠

⎞

⎠

=
δua(t)

δui
− exp ui (t)

∑k
j=1 exp uj (t)

=
δua(t)

δui
− πi (t)

=
{

1 − πi (t) if i = a (t)
− πi (t) otherwise

This results in the following update rule, similar to the form seen in (2) for the
(LR−I) scheme:
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If i = a(t) then

ui(t + 1) = ui(t) + αr(t)(1 − πi(t))
+ αh′ +

√
αsi(t)

otherwise

ui(t + 1) = ui(t) − αr(t)πi(t)
+ αh′ +

√
αsi(t)

(6)

3 Testbed of Games

This section provides background information on multi-agent games used as a
benchmark for multi-agent reinforcement learning. Starting with a brief intro-
duction to games, Section 3.1 concisely explains solution concepts, namely Nash
equilibrium, Pareto efficiency, and maximum social welfare. Examples of various
games for two and more players are provided through Sections 3.2 to 3.4.

3.1 Games

Normal form games are stateless games that make the assumption that players
act simultaneously. Each player i participating in the game has a set of actions
Ai available. When all agents have played an action they receive a numerical
reward ri.

Since normal form games are stateless, the behavior of player i can be de-
scribed by a single probability distribution πi over its action-set Ai. This distri-
bution is called a strategy or policy. If πi

j = 1 for any j ∈ Ai then player i follows
a pure strategy otherwise a mixed strategy. Furthermore let Ri(π1, . . . , πn) be the
expectation of payoff ri for agent i given the strategies π1, . . . , πn.

Based on the notion of the expected payoff R and the strategy profile π =
(π1, . . . , πn) this section gives a formal definition of Nash equilibrium, Pareto
efficiency and maximum social welfare profiles.

Definition 1: Nash equilibrium
A strategy profile π = (π1, . . . , πn) is a Nash equilibrium if for all players i the
following condition holds.

Ri(π) ≥ Ri(π1, . . . , πi−1, π̃i, πi+1, . . . , πn) ∀π̃i

Hence no player can improve its payoff by exclusively changing its strategy to
some π̃ given fixed strategies for all other agents.

Definition 2: Pareto efficiency
A strategy profile π is Pareto efficient (or Pareto optimal) if there is no π̃ �= π
such that

Ri(π̃) ≥ Ri(π) ∀i
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and for some i

Ri(π̃) > Ri(π).

Thus a Pareto efficient solution implies that no player can improve its expected
payoff without making at least one other player worse off.

Definition 3: Maximum social welfare profile
The social welfare of an interactive situation is defined by the sum of individual
rewards. Hence, the maximum social welfare can be denoted by:

max
π

ω (π) = max
π

n∑

i=1

Ri (π)

Furthermore, the strategy profile π∗ with

π∗ = arg max
π

ω (π)

is called a maximum social welfare profile. In cooperative games Pareto efficient
solutions and maximum social welfare profiles are of major interest, whereas in
competitive situations Nash equilibria are studied.

The next subsections introduce seven normal form games.

3.2 2 x 2 Matrix Games

Normal form games with two players each choosing from two actions are called
2 x 2 matrix games. The family of 2 x 2 games can be subdivided into three
categories according to there payoff matrices [9]: (a) games with one pure equi-
librium, (b) games with one mixed equilibrium and (c) games with two pure
equilibria and one mixed equilibrium. This subsection presents one example for
each class.

The Prisoners’ Dilemma (PD) is a well studied category (a) game in which
the players may confess (C) or deny (D) [2]. The payoff matrix of the PD game
is given below. The single pure Nash equilibrium is located in the bottom-right
corner, corresponding to both players playing action C.

D C
D 3,3 0,5
C 5,0 1,1

Matching Pennies (MP) is a 2 x 2 game belonging to category (b) and defined
by the following payoff matrix:

H T
H 1,-1 -1, 1
T -1, 1 1,-1
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Both players chose simultaneously for one side of a penny, either they play Head
(H) or Tail (T ). If both pennies show the same face player 1 keeps the coins;
for a mismatch player 2 gets rewarded. The mixed equilibrium is reached if both
players play strategies (0.5, 0.5) which means that a player selects action H and
T each with probability 0.5.

Category (c) is covered by the next example, the Bach or Stravinsky (BoS)
game, also referred to as the Battle of the Sexes. In this strategic situation the
players want to visit a concert together. They can chose between Bach (B) or
Stravinsky (S) but no communication is allowed. Player 1 prefers B whereas
player 2 has a preference for S. Strategies corresponding to the joint action
pairs (B, B) and (S, S) form pure equilibria; the mixed equilibrium is defined by
the strategies (2

3 , 1
3 ) and (1

3 , 2
3 ) for player 1 and 2 respectively. Miscoordination

results in a zero payoff for both. The payoff matrix of the BoS game is given
below.

B S
B 2,1 0,0
S 0,0 1,2

3.3 Penalty and Climbing Game

Games with more than one equilibrium are studied to investigate convergence to
local or global optima. The BoS game contains multiple pure equilibria, however
it is not possible to point out the best due to a conflicting interest. The mixed
equilibrium is a fair solution but not in the least optimal with respect to social
welfare. Therefore games with equal payoff for both players are studied; these
games are called symmetric games. The penalty game and the climbing game
are examples of symmetric games. Payoff matrices for both games are given in
Figure 2.

In the penalty game players have to coordinate their actions in order to yield
high payoffs (joint actions (1, 1) and (3, 3)). Miscoordination leads to punishment
by negative rewards. Furthermore the joint action (2, 2) is also an equilibrium
but not Pareto efficient.

Two equilibria can be found in the climbing game. Joint actions corresponding
to positive non-zero payoffs are points of attraction, where the joint actions (1, 1)
and (2, 2) form equilibria. Once again the Pareto optimal Nash equilibrium is
surrounded by negative rewards to punish miscoordination. Learners have to
virtually climb up to reach the maximum reward.

⎡

⎣
10 0 −10
0 2 0

−10 0 10

⎤

⎦

⎡

⎣
11 −10 0

−10 7 6
0 0 5

⎤

⎦

Fig. 2. Payoff matrices for the penalty (left) and the climbing game (right)
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3.4 Guessing and Dispersion Game

So far the introduced games cover interactions between two players. Since MAS
with only two agents are barely seen in practice this subsection defines symmetric
games with n players and n actions where n can be any finite integer.

The guessing game is well suited for generalization up to n players. Each player
i selects an action ai from the same action set A = {1, . . . , n} synchronously.
If all players ’guess’ the same action the reward will be maximal; if a player
exclusively chooses for an action his reward will be minimal. This game is called
a coordination game; all players have to coordinate, to ’guess’, the same action
in order to achieve the maximum payoff.

Closely related is the dispersion game also called anti-coordination game. The
goal in this particular game is to disperse over the entire action set as much as
possible. Just like in the previous game an action set of size n is assumed; which
means the maximal dispersion outcome (MDO) is reached if all players choose
for sole actions.

Since these two games can be easily scaled up to more than just two players
it is more convenient to use a payoff function instead of matrices. Based on the
sum of players selecting the same actions these functions are given in (7) and
(8) for the guessing game and the dispersion game respectively.

The number of players selecting action j is defined as

S(j) =
n∑

i=1

id(ai, j)

where

id(i, j) =
{

1 if i = j
0 otherwise

.

Thus the payoff function of the guessing game can be denoted by

ri =
S(ai)

n
. (7)

For the dispersion game the following payoff function applies:

ri =
{

1 if S(ai) = 1
0 otherwise

(8)

The payoff differs between the case where one player occupies an action slot
alonw (payoff equals 1) and the situation where at least two players have selected
the same action (payoff equals 0). Note that the reward ri ∈ [0, 1] for all agents
i = 1, . . . , n.

4 Methodology

In order to explore the performance of a team of learners to its full extent it must
be studied under various initial conditions and parameter profiles. The following
four subsections present the different means that we will use to approach the
given task in Section 5.
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4.1 Policy Trajectory Plot

A rather simple way of displaying evolving policies are trajectory plots. In a 2 x
2 game π1

2 = 1−π1
1 and π2

2 = 1−π2
1 . Therefore the strategy profile π =

(
π1, π2

)

can be reduced to the pair
(
π1

1 , π
2
1
)

without losing information. The trajectory
of this pair is recorded during one single or multiple runs and plotted in a 2D
space. To indicate the direction of convergence grayscales are used for trajectory
plots in Section 5. With increasing number of epochs t the brightness of the
trajectory changes from light to dark.

For the penalty and the climbing game the cardinality of the action-sets equals
3 for both agents. Therefore using the same transformation as above the strategy
profile can only be reduced to a 4-tuple and is not displayable in the 2D space.
However, the policy trajectories π1(t) and π2(t) can be plotted separately using
two simplex plots. The three vertices of a simplex correspond to the pure policies
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

4.2 Directional Field Plot

A second visual method to analyze learning dynamics are directional field plots.
Again a reduced strategy profile (see Subsection 4.1) is used for analyzing 2 x 2
games. A team of learners start at regular grid points over [0, 1]2:

(
π1

1 (t0) , π2
1 (t0)

)
∈ [0, 1] × [0, 1]

The velocity field of this team can then be denoted by

d (v, u)
dt

=

(
π1

1 (t0 + Δt) − π1
1 (t0) , π2

1 (t0 + Δt) − π2
1 (t0)

)

Δt

where Δt is the number of epochs conducted at every grid point and v and u
denote the respective strategies of both players. The velocities are displayed by
arrows pointing in the direction of d(v,u)

dt . The length of the arrows indicates the
absolute value ‖ d(v,u)

dt ‖.

4.3 Convergence

While 2 x 2 games can easily be studied by graphical analysis, higher dimensional
games like the penalty and the climbing game require analytical means. The
third method studies convergence in respect to spatial and temporal measures.
To measure spatial convergence a metric over the space of strategy profile needs
to be defined. Let

d (π, γ) = max
i

max
j

|πi
j − γi

j | (9)

be the distance of two strategy profiles π and γ. Then a strategy profile π has
converged to an optimal π∗ if the distance d(π, π∗) is less than the threshold ε
at any point in time from epoch T on.

Definition 4: A strategy profile π is called ε-converged to π∗ in T epochs if the
following condition holds:

d (π(t), π∗) < ε ∀t, t ≥ T (10)
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Note that (9) is used in favor of other metrics since it applies to multi-agent
situations without losing the intuitive explanation of threshold ε in (10): If a
strategy profile is ε-converged each single action probability diverges at most ε
from its desired value for all agents.

By means of ε-convergence, Section 5 studies the convergence to Nash equilibria
and Pareto optimal solutions. Multiple runs are conducted in order to estimate the
percentage-wise convergence to different points of attraction and the convergence
time T . The experiments are repeated to determine confidence intervals.

4.4 Cumulative Reward Plot

The coordination and anti-coordination games (see Subsection 3.4) are cooper-
ative and therefore the maximum social welfare can be used as a performance
threshold. Both payoff functions (7) and (8) for the coordination games yield the
same maximum social welfare of value n. If the cumulative reward

∑n
i=1 ri(t) = n

a maximum social welfare profile is being played in t. Section 5 shows cumulative
reward plots to indicate if agents successfully converge to these desired profiles.

5 Results

In this section we present the results obtained with the value-iteration learners
and the policy-iteration learners in all three type of games. We summarize all
learning performances and for some of the most interesting cases we provide
visualizations of the learning dynamics. Concerning Learning Automata, the
emphasis is placed on FALA, including various update schemes; the explanations
only relate to PLA if the results differ significantly.

Not only successful settings are shown, but also conditions and parameters
under which the algorithms may fail to converge optimally. Furthermore, a va-
riety of visualizations allow the reader to receive an intuitive impression of the
learning dynamics.

5.1 Simple Games: 2 × 2

Policy-Iteration Learners. Table 1 summarizes the learning performance of
FALA in 2 x 2 games. The confidence intervals for mean estimates are obtained
by gathering 101 samples each averaging 20 runs of a particular game with
Tmax = 5 000 epochs. Thus T -values in the table approaching Tmax indicate
that the learners have not converged (see (10)).

The LR−I update scheme converges in the PD and BoS game to the pure
equilibria but fails to find the mixed one in the MP game. Results for the LR−P

confirm the finding that the basin of attraction coincides with the equilibrium
in the MP game and is located near the mixed one in the BoS game. However,
high values for T indicate that both situations are unstable. Thus it cannot be
guaranteed that a team of learners stays in a equilibrium once it is reached. Due
to the penalty term the action selection persists stochastic, and the team may
jump out of the ε-convergence region once in a while.
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Table 1. Convergence performance of FALA in 2 x 2 games. 95% confidence intervals
for mean estimates of of ε-convergence percentage with ε = 0.1 and mean convergence
time T .

FALA LR−I α = 0.01, β = 0

Nash eq. Convergence % T
PD (0, 0) 99.4% ± 0.3% 1468.8 ± 31.3
MP

( 1
2 , 1

2

)
2.4% ± 0.7% 4408.7 ± 44.2

BoS
(0, 0) 49.2% ± 2.3%

559.5 ± 17.3(1, 1) 50.8% ± 2.3%( 2
3 , 1

3

)
0.0% ± 0.0%

FALA LR−P α = β = 0.01

Nash eq. Convergence % T
PD (0, 0) 0.0% ± 0.0% 3895.0 ± 35.9
MP

( 1
2 , 1

2

)
99.1% ± 0.4% 4821.1 ± 4.1

BoS
(0, 0) 0.0% ± 0.0%

4550.4 ± 11.2(1, 1) 0.0% ± 0.0%( 2
3 , 1

3

)
19.8% ± 1.7%

FALA LR−εP α = 0.01, β = 0.001

Nash eq. Convergence % T
PD (0, 0) 0.0% ± 0.0% 942.2 ± 19.7
MP

( 1
2 , 1

2

)
62.0% ± 2.3% 4813.0 ± 3.9

BoS
(0, 0) 47.5% ± 1.9%

652.6 ± 22.8(1, 1) 48.4% ± 1.9%( 2
3 , 1

3

)
0.0% ± 0.0%

FALA LR−εP α = 0.01, β = 0.0001

Nash eq. Convergence % T
PD (0, 0) 100.0% ± 0.0% 1301.9 ± 24.9
MP

( 1
2 , 1

2

)
7.1% ± 1.2% 4909.2 ± 2.5

BoS
(0, 0) 50.3% ± 2.2%

559.7 ± 15.4(1, 1) 49.7% ± 2.2%( 2
3 , 1

3

)
0.0% ± 0.0%

The LR−εP is a trade-off between the previous schemes. Depending on the
ratio of reward factor α and penalty factor β, convergence to pure equilib-
ria or near mixed ones is reached. For the parameter setting α = 0.01, β =
0.001 the learners do not ε-converge to the equilibrium in the PD, though the
T is comparable small to Tmax. Considering the corresponding field plot (see
Figure 3) it becomes clear that the team does converge but to a point near
(0.2, 0.2) which is outside the ε-convergence region.

It is worth noting that all results obtained for LR−I and LR−εP in Figure 3
and Table 1 can be reproduced using PLA with appropriate learning rates and
zero temperature for LR−I and small values of σ for LR−εP .

These findings are convincingly illustrated by the dynamics of the learning
algorithms in Figure 3. All field plots are rendered using small learning rates
and parameters Δt = 10, r = 100 as explained in Subsection 4.2. The plots
help to localize basins of attraction and show when these coincide with Nash
equilibria. We do not show the dynamics of the PD game.

Value-Iteration Learners. Table 2 summarizes the convergence behavior of
the studied Q-learning algorithms in simple games. Confidence intervals are com-
puted from 101 samples that average over 20 runs each. Q-values are initialized
to corresponding policies that follow a uniform distribution over the policy space.

Table 2 shows convergence of FMQ and lenient Q to the Nash equilibrium in
the PD game. Both learners converge to the Pareto optimal strategy (D, D) for
all runs that do not converge to the Nash equilibrium (FMQ 25.4% and lenient
Q-learner 14.6%). (D, D) is also the maximum social welfare profile.

The MP game yields one mixed NE where both players mix both actions
equally. Figure 4 visualizes the learning behavior of the three learners in the MP.

The Battle of Sexes game yields two pure and one mixed equilibrium.
Figure 5 shows the learning dynamics of the three learners in this game. All
learners converge to the pure Nash equilibrium under τ = 0.1, but not if the
temperature is increased to τ = 0.5.
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Fig. 3. Overview of directional field plots for FALA in MP (top) and BoS (bottom).
Columns correspond to different update schemes; left column: α = 0.01, β = 0 (LR−I),
center column: α = β = 0.01 (LR−P ) and right column: α = 0.01, β = 0.001 (LR−εP ).

Table 2. ε-near convergence with ε = 0.1 to equilibria in 2x2 games analyzed after
I = 2000 iterations. All learners use α = 0.01, τ = 0.1 for PD and BoS, τ = 0.5 for
PM. Equilibria are given as (π1(a11), π2(a21)). Indicated are 95% confidence intervals
for convergence percent and mean convergence time.

Q-learner
NE Convergence T̄

PD (0, 0) 99.4% ± 0.4% 1080.1 ± 8.0
MP

( 1
2 , 1

2

)
92.0% ± 1.3% 1862.9 ± 3.2

BoS
(0, 0) 50.0% ± 2.4%

129.2 ± 2.2(1, 1) 50.0% ± 2.4%( 2
3 , 1

3

)
0.0% ± 0.0%

FMQ-learner F = 3
NE Convergence T̄

PD (0, 0) 74.6% ± 1.9% 5.2 ± 0.6
MP

( 1
2 , 1

2

)
78.7% ± 1.8% 1893.3 ± 2.4

BoS
(0, 0) 50.6% ± 2.2%

2.5 ± 0.2(1, 1) 49.4% ± 2.2%( 2
3 , 1

3

)
0.0% ± 0.0%

Lenient Q-learner L = 3
NE Convergence T̄

PD (0, 0) 85.4% ± 1.4% 186.3 ± 6.9
MP ( 1

2 , 1
2 ) 81.9% ± 1.6% 1547.9 ± 8.8

BoS
(0, 0) 48.3% ± 2.1%

128.0 ± 4.7(1, 1) 51.7% ± 2.1%( 2
3 , 1

3

)
0.0% ± 0.0%

5.2 Penalty and Climbing Games

Policy-Iteration Learners. The results for the penalty and the climbing game
are summarized by Table 3. The LR−P has not converged to pure policies in these
games and is therefore omitted in the overview. Suboptimal convergence for all
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Fig. 4. Directional field plots (top row, I = 10) and trajectories (bottom row, I =
600) in the MP for the Q-learner (left), FMQ (F = 3, center) and lenient Q-learner
(L = 3, right) under α = 0.01 and τ = 1
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Fig. 5. Directional field plots (I = 20, top row) and example trajectories (bottom row)
for Q-learner (left), FMQ (F = 3, center) and lenient Q-learning (L = 3, right) in BoS
under τ = 0.5 and τ = 0.01
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Table 3. Learning performance in the penalty game (PG) and the climbing game
(CG). 95% confidence intervals for mean estimates of ε-convergence percentage with
ε = 0.1 to different joint actions and convergence time T .

FALA LR−I α = 0.01, β = 0

Joint action R Convergence % T

PG
(1, 1) 10 46.1% ± 2.3%

1176.7±(2, 2) 2 5.3% ± 1.1%
(3, 3) 10 47.6% ± 2.3% 36.7

CG

(1, 1) 11 36.9% ± 1.9%

2623.0±(2, 2) 7 15.7% ± 1.6%
(2, 3) 6 10.7% ± 1.3%
(3, 3) 5 4.8% ± 1.0% 58.3

FALA LR−I α = 0.01, β = 0.001

Joint action R Convergence % T

PG
(1, 1) 10 49.3% ± 2.2%

1247.5±(2, 2) 2 0.0% ± 0.0%
(3, 3) 10 49.9% ± 2.3% 37.1

CG

(1, 1) 11 34.5% ± 2.0%

3347.1±(2, 2) 7 0.3% ± 0.2%
(2, 3) 6 0.0% ± 0.0%
(3, 3) 5 0.0% ± 0.0% 73.8

FALA LR−I α = 0.01, β = 0.0001

Joint action R Convergence % T

PG
(1, 1) 10 49.0% ± 2.2%

1160.6±(2, 2) 2 3.2% ± 0.8%
(3, 3) 10 46.4% ± 2.1% 37.9

CG

(1, 1) 11 39.7% ± 2.3%

2735.8±(2, 2) 7 15.1% ± 1.5%
(2, 3) 6 6.2% ± 1.0%
(3, 3) 5 2.0% ± 0.7% 79.1

PLA α = 1, σ = 0.05, L = 1.8, K = 0.5, n = 1

Joint action R Convergence % T

PG
(1, 1) 10 41.5% ± 2.0%

4927.5±(2, 2) 2 0.5% ± 0.3%
(3, 3) 10 41.1% ± 2.1% 3.4

CG

(1, 1) 11 52.0% ± 1.9%

4943.8±(2, 2) 7 10.7% ± 1.2%
(2, 3) 6 6.5% ± 1.0%
(3, 3) 5 3.8% ± 0.8% 3.5

other learners are rare in the penalty game, whereas the climbing game is quite
challenging. For the first time parameterized learning automata significantly
outperform standard FALA. The bound L is chosen small to keep exploration
on a constant level whereas the learning rate is set to a high value to approach
decisively high payoff situations.

The simplex plots in Figure 6 show example runs for FALA and PLA under
two initial conditions. The first condition studies the learning dynamics starting
from a strategy profile near ((0, 0, 1) , (0, 0, 1)) corresponding to common payoff
5. From this point the learners virtually have to climb up in order to reach the
optimal solution, which is in this case a Pareto optimal Nash equilibrium and
a maximum social welfare profile. The second initial condition is near another
Nash equilibrium yielding a payoff equal to 7. This point challenges the learners
as well; in order to improve the common payoff both agents simultaneously have
to switch to action 1. If only one agent switches the reward reduces to 6, 0 or −10.

Value-Iteration Learners. The results for regular Q-learning and FMQ learn-
ing from [4] as well as the results for lenient Q-learning from [8] are confirmed.
Table 4 compares the algorithms’ performances in both games. All results of this
subsection refer to the games with penalties c = p = 10. Confidence intervals
are calculated from 101 samples that average over 20 runs.

Experiments in penalty games make use of an iteration dependent tempera-
ture and a learning rate of α = 0.9. The experiments use a decay factor s = 0.006
and an initial temperature τ0 = 500.

τ t ← (τ0 − 1) · e−s·t + 1 (11)
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Fig. 6. Simplex plots for FALA (top) and PLA (bottom) in the climbing game shown
with two initial conditions each. Convergence after t = 200 epochs with α = 0.1,
β = 0.01 (LR−εP ) for FALA and α = 0.3, σ = 0.2, L = 4, K = n = 1 for PLA.

Table 4. Average ε-near convergence over 2020 runs (ε = 0.1) to the maximum social
welfare policy for all learners in the CG and PG with penalties c = p = 10. All learners
under α = 0.9 and decreasing τ , F = 10 and L = 10 for CG and L = 5 for PG.

Learner CG PG
Q 21.8% 79.6%

FMQ 98.9% 100.0%
Lenient Q 99.9% 99.3%

Table 5 lists the confidence intervals of ε-near convergence with ε = 0.1 to
pure strategy profiles in percentages.

The strategy profile π∗ corresponding to (T, L) is a Pareto efficient Nash
equilibrium. Furthermore, it is the maximal social welfare profile and as such the
desired point of convergence for cooperative players. It also yields the highest
individual payoff, so it is as well the best strategy profile for independent learners.

The climbing game cannot be solved satisfactorily by the regular Q-learner.
It can be observed, that Q-learning converges to π∗ in about 21.8%. Both adap-
tations outperform this by far, FMQ with F = 10 achieves 98.9% while lenient
Q-learning with L = 10 achieves 99.9%.

Example trajectories of the FMQ-learner are visualized in Figure 7.

5.3 Scaling: Dispersion and Guessing Games

Policy-Iteration Learners. The following scaling experiments are conducted
to give an intuition about how well learning automata scale with respect to the
number of agents in coordination and anti-coordination games. Therefore the
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Table 5. 95% Confidence intervals for ε-near convergence with ε = 0.1 in CG to pure
strategy profiles in percent. Analyzed after I = 2000 iterations with α = 0.9 and
decreasing τ . Q-learner (top, 43.1% not converged to any pure strategy profile), FMQ-
learner (middle, F = 10, 0.1% n.c.) and lenient Q-learner (bottom, L = 10, 0.1% n.c.).
Player 1 chooses T, M or B and player two chooses L, C or R. The maximal social
welfare profile is (T, L).

Q-learner
L C R

T 21.8 ± 1.9 0 ± 0 0 ± 0
M 0 ± 0 0.2 ± 0.2 6.0 ± 1.1
B 0 ± 0 0 ± 0 28.9 ± 1.9

FMQ-learner F = 10
L C R

T 98.9 ± 0.4 0 ± 0 0 ± 0
M 0 ± 0 0.6 ± 0.3 0.1 ± 0.1
B 0 ± 0 0 ± 0 0.3 ± 0.3

Lenient Q-learner L = 10
L C R

T 99.9 ± 0.2 0 ± 0 0 ± 0
M 0 ± 0 0 ± 0 0 ± 0
B 0 ± 0 0 ± 0 0 ± 0

1

12 2

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Player 1 Player 2

Fig. 7. Two example trajectories for both FMQ-learners with F = 3 in the CG show
convergence to the global optimum (T, L) starting close to (B, L) in (1) and (M, C) in
(2). Initial high exploration causes large policy shifts while eventual exploitation allows
convergence.

emphasis lies not on statistical sampling but rather on an intuitive understanding
of example runs.

Figure 8 shows the cumulative reward plot for FALA using the LR−εP update
scheme in the dispersion game as well as PLA in the guessing game. In both
cases the learners converge to a maximum social welfare profile. Note that the
dispersion game has n! distinct maximum social welfare profiles whereas the
guessing game has only n. Convergence time T (see (10)) for the two example
runs are T ≈ 600 and T ≈ 6000 respectively.

For the dispersion game the same facts apply. The payoff function (8) sharply
rewards only the case in which an agent has exclusively selected an action. Again
the agent has to be decisive in order to learn this action quickly. Furthermore
randomness is required to escape from a zero reward situation where no exclusive
action slot has been found yet.
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Fig. 8. Cumulative reward plot for FALA in the dispersion game (left) and for PLA
in the guessing game (right) with both 100 agents. Learning parameters are α = 0.1,
β = 0.01 (LR−εP ) and α = 1, σ = 0.005, L = 10, K = n = 1 for FALA and PLA
respectively.
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Fig. 9. Social welfare percentage over iterations in the GG for different learners (n =
100, α = 1 and τ = 0.01; averaged over 10 runs). All learners except the lenient
Q-learner converged to the suboptimal solution with two equally sized groups once.

Value-Iteration Learners. The GG with n players has n maximal social wel-
fare profiles while the DG has n! maximal social welfare profiles. As n! is much
larger than n the DG can be solved much faster than the GG.

In the GG all agents try to group as quickly as possible. Convergence to sub-
optimal solutions, e.g. two groups with equally many agents, are not uncommon.
Figure 9 shows the speed of convergence for different learners in the guessing
game. An increase of the FMQ persistence F shifts the grouping process to an
earlier iteration. However, there is a point of diminishing returns. Furthermore,
increasing F does not seem to increase the qualitative convergence while lenient
Q-learning slows down the learning process but converges to a maximal social
welfare equilibrium.
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Fig. 10. Social welfare percentage over iterations in the DG (averages of 10 runs).
Q-learner under α = 0.1, different action selection methods (left, n = 1000), different
numbers of agents: Q-learner with ε-greedy (center, ε = 0) and FMQ with Boltzmann
distribution (right, F = 10, τ = 0.01).

Figure 10 (left) visualizes the impact of the exploration method. Furthermore,
scalability of the Q-learner with an ε-greedy action selection is compared to the
FMQ heuristic with a Boltzmann action selection. An equilibrium can be found
within reasonable numbers of iterations using the ε-greedy action selection. This
action selection method actually allows to scale up to thousand agents without
significant deterioration of the performance over the iterations, the lines for
n = 100 and n = 1000 almost coincide in the corresponding plot. FMQ also
scales well but has a stronger dependency of the maximal convergence on the
number of agents. However, a performance of above 90% is achieved within the
first 50 iterations even for n = 1000.

6 Discussion and Future Work

The obtained results demonstrate the learning performance of all algorithms
considered. Graphical tools help to understand the learning dynamics of the
algorithms. Adequate parameter settings for convergence to equilibria have been
shown. Overall, it can be observed that all results are quite sensitive to the
parameter settings.

In general, low temperatures and accompanying high exploitation lead to con-
vergence to pure strategy profiles while higher temperatures that impose more
exploration allow convergence to mixed equilibria. Furthermore, higher conver-
gence to mixed equilibria is achieved by smaller learning rates. In contrast, high
learning rates can be applied to overcome penalties in cooperative coordination
games. FMQ-learning with high persistence F drives the learning process to
pure strategy profiles within few iterations if the temperature is low. Lenient
Q-learning finds mixed solutions but requires many iterations to converge. Con-
trary, FALA are more robust with respect to parameter changes. Scaling down
the learning rate generally results in better convergence performance although
increasing the required number of iterations. The LR−εP scheme gives a good
trade-off between the two extremes LR−I and LR−P . It unites the ability to find
mixed policies with high percentage of global convergence. This result is also
confirmed by the various visualizations used in this work.
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An second observation from our research is that formal criteria may fail under
practical conditions. Thus empirical results as conducted in this work are essen-
tial. The PLA superimpose noise on the learning update in order to overcome
convergence to suboptimal solutions and for this theoretical guarantees can be
found [5]. However, for a challenging task, such as the climbing game, we could
not reach it in an experimental setting. Although this may be caused by the
limited number of epochs, the central issue is clearly the high dimensional pa-
rameter space. The PLA update rule comprises five parameters that all have to
be tuned to fit the environment.

Scaling experiments in the Dispersion Game reveal high performance of the
Q-learner with an ε-greedy action selection and FMQ with a Boltzmann action
selection under low temperatures. High exploitation imposed by these action
selection methods is required to facilitate a quick dispersion over the actions. For
the same reason, a high learning rate is needed for the LA algorithms that also
indicate good scaling potential. The Guessing Game requires quick grouping but
also more exploration to avoid suboptimal solutions with several, approximately
equally sized groups. This implies that a trade-off needs to be chosen between
fast convergence and optimal convergence. However, it should be noted that this
work presents only example runs for the two coordination games and therefore
cannot give any general conclusion on scaling. In future investigations we would
like to test the scalability of FALA and PLA more extensively.

7 Conclusion

This research has experimentally studied the learning performance of state-of-
the-art value-based and policy-based iterators in multi-agent games. In particular
Q-learning, Lenient Q-learning, FMQ, FALA, and PLA are surveyed. A variety
of competitive and cooperative games have served as a testbed to analyze their
learning performance. Furthermore, various visualization methods are used and
interconnected to reveal the complex learning dynamics of LA in games.

From the performances of independent reinforcement learners we may conclude
that the learners are highly dependent on the correct parameter tuning. For the
value-based methods, high temperatures enhance exploration and enable the con-
vergence to mixed equilibria, while small temperatures enforce exploitation and
increase the probability of convergence to pure strategy profiles. Stability of the
learning process can be supported by small learning rates and a temperature that
decreases over time. In the context of penalty games, the adaptations FMQ and le-
nientQ-learning outperform the regularQ-learner significantly and converge to the
globaloptimum.For thepolicy-basedmethods, results showthat theLR−εP scheme
maintains a good trade-off between convergence performance and robustsness.
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