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Abstract

Auctions are pervasive in today’s society. They provide a variety of markets, ranging from consumer-to-
consumer online auctions to government-to-business auctions for telecommunications spectrum licenses.
Starting from a set of trading strategies, this article enables a strategic choice by introducing the use of
linear programming as a methodology to approximate heuristic payoff tables by normal form games. This
method is evaluated on data from auction simulation by applying an evolutionary game theory analysis.
The information loss in the normal form approximation is shown to be reasonably small such that the
concise normal form representation can be leveraged in order to make strategic decisions in auctions. In
particular, a mix of trading strategies that guarantees a certain profit against any population of traders is
computed and further applications are indicated.
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1 Introduction
Auctions are deployed in a variety of real markets to foster highly efficient trading. They range from
consumer-to-consumer markets like eBay via business-to-business stock exchanges to government-to-business
auctions for mineral rights or government licenses for the telecommunications spectrum [7, 9]. Furthermore,
auction mechanisms have been transfered successfully to solve other resource allocation problems, e.g. in
the domain of efficient internet traffic routing [12]. Despite this diversity, even single markets of enormous
scale may have profound impact on society, e.g. the New York Stock Exchange reported a trading volume
of 11, 060 billion USD in 2000 [3]. This motivates researching how to run auctions and how to extract profit
by trading within them as auctions are pervasive in today’s society.

The traders that participate in an auction agree to subject to a set of market rules in order to exchange
goods for money. Within the scope of this article only commodity markets are considered, i.e. a single type
of an abstract good is traded. Each trader is assumed to have a private valuation of the good which is only
known to himself. In double auctions, buyers and sellers place offers to indicate their intention to trade at a
certain price [9]. The here considered clearing house auction proceeds in rounds and polls offers from each
trader each round. When all offers are collected, an equilibrium price is established based on the available
offers such that demand meets supply at this price. It is commonly set to the average of the two offers that
define the range of possible equilibrium prices, i.e. the lowest bid and the highest ask that can be matched
in the equilibrium. Each buyer with an offer above that price is matched with a seller having an offer below
that price. The profit of a transaction can be computed as the difference between the transaction price and
the private value, assuming that buyers will not buy above their private value and sellers will not sell below
their private value.

A multitude of trading strategies has been devised to derive the next offer, possibly exploiting the knowl-
edge about offers and transactions that were observed in previous rounds. The most trivial one is Truth
Telling (TT) which just reveals the private value by placing offers exactly at that value. The experiment
of this article instead considers three more sophisticated trading strategies which give raise to non-trivial
evolutionary dynamics. Roth and Erev devised a reinforcement learning model of human trading behavior
in [2] which is modified to perform in a clearing house auction as Modified Roth-Erev (MRE) [8]. MRE is



evaluated in competition to Gjerstad and Dickhaut (GD) and Zero Intelligence Plus (ZIP). GD maximizes
the expected profit by computing the profit and probability of leading to a transaction for a set of relevant
prices [5]. ZIP places stochastic bids within a certain profit margin, which is lowered when a more compet-
itive offer was rejected and increased when a less competitive offer was accepted [1]. It can be noted that
most trading strategies are adaptive to the progress of the auction, the internal processes however are outside
the scope of this article.

Given a set of available trading strategies, it is of high interest which strategy is best in the sense that it
yields the highest expected payoff. However, this question cannot be answered in general as the performance
of a trading strategy is highly dependent on the competition it faces [13]. Let us therefore assume an auction
that is populated by traders, each deploying one of the trading strategies above. The profit of each trader is
dependent on the overall mix of strategies and traders may choose to change their strategy in the course of
time. A heuristic payoff table is proposed in [14] and is adopted by several authors to capture the average
profit of each type of trading strategy under all possible mixtures of strategies in a finite population [6, 10].
This table is a first step towards revealing the dynamics of adopted trading strategies in auctions and can for
example be used to analyze which trading strategy yields the highest potential for improvements [10].

Although the heuristic payoff table provides the basis for analyzing the dynamics in auctions, it is unintu-
itive and lacks information about the payoffs for strategies that are not yet present in a population. However,
exactly these payoffs would provide information about whether it is profitable or not to be the first one to
adopt this strategy. The normal form game on the other hand enables an individual trader to calculate his
expected profit for each of his possible choices against any mix of strategies he faces. It is more intuitive
and allows inspecting the strategic situation with means from game theory, e.g. allowing to compute optimal
strategies, best replies and Nash equilibria. This suggests the question whether a heuristic payoff table can
be approximated by a normal form game in order to open up these opportunities. Answering this ques-
tion affirmatively, this article demonstrates how an approximation can be found using linear programming, a
common technique to optimize a linear goal function subject to a set of linear inequalities. The methodology
is illustrated by approximating a heuristic payoff table from the auction domain and the results presented be-
low show a reasonably small error such that the approximation can be leveraged for strategic considerations
and an intuitive grasp of the game in auctions.

The remainder of this article is structured as follows: Section 2 introduces the game theoretical back-
ground that is required by the methodology presented in Section 3. Subsequently, Section 4 illustrates the
method by applying it to an example from the auction domain and presents the resulting performance. These
results are discussed in Section 5 and the paper is concluded with future directions in Section 6.

2 Game theoretical background
Classical game theory is the mathematical study of strategic conflicts of rational agents. Each individual
i chooses a pure strategy si from the set of available strategies Si and has a preference relation over all
possible outcomes. The players are assumed to choose their actions simultaneously and independently.
This implies that the preference relation can be captured by a numerical payoff function τi which is public
knowledge and assigns a value of desirability to each possible joint strategy s = (s1, . . . , sn), where n is
the total number of agents.

τi : S1 × . . .× Sn → R

In the context of auctions, each pure strategy corresponds to a trading strategy and the preference relation is
proportional to the profit that an agent can make given the set of opponents’ trading strategies. This section
introduces two different means to capture payoff functions for multi-agent games and auctions in particular:
The normal form game and the heuristic payoff table. Furthermore, advantages and disadvantages of both
representations are discussed. Subsequently, the evolutionary perspective is compared to the classical view
from game theory and the concepts of replicator dynamics and basins of attraction are presented.

2.1 Normal form games
A normal form game commonly describes the payoff to each agent in matrix notation. The matrix given
in Figure 1 describes a symmetric two-player normal form game. The first player may choose a row r, the
second player chooses a column c and the joint choice (r, c) determines the payoff which the matrix gives for
the first player. However, the payoff matrix for the second player equals the transposed of the first player’s
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Rock Paper Scissors
Rock 0 −1 1
Paper 1 0 −1

Scissors −1 1 0

Figure 1: Payoff matrix for the symmetric two-player normal form game Rock-Paper-Scissors.

payoffs in symmetric games. Hence, it can be derived from the same table by consulting the entry (c, r).
Given k strategies, the matrix yields k2 entries which compares favorably to the size of heuristic payoff
tables given below. Both players seek to maximize their expected payoff; optimal strategies and the value of
this game are derived in Section 5.2.

Within a normal form game, the player optimizes his expected payoff against an opponent that mixes
according to a certain probability distribution. Similarly, he faces a field of traders that are distributed over
the strategies in reality. It does not actually matter which opponent plays which strategy but rather how many
opponents deploy which strategy. The opponent in normal form games therefore resembles the population
in which the agent is situated in reality.

2.2 Heuristic payoff tables
A heuristic payoff table may also be used to capture the payoffs of a game [14]. However, it requires a
finite population of traders such that all possible combinations of strategies can be evaluated. If each agent
i ∈ {1, 2, . . . , n} has to choose a strategy si ∈ {1, 2, . . . , k}, this leads to a joint strategy (s1, . . . , sn).
However, for an individual trader it is only important to know how many of his opponents are playing each
of the different strategies. So, given (s1, . . . , sn) the individual trader could derive that there are N1 agents
playing strategy 1, N2 agents playing strategy 2, etc.. This would yield a discrete profileN = (N1, . . . , Nk)
telling exactly how many agents play each strategy. The average profit for playing a strategy can then be
denoted by a payoff vector U(N) = (U1(N), . . . , Uk(N)) indicating that strategy s ∈ {1, 2, . . . , k} would
yield an average payoff of Us(N) for the discrete profileN . The distribution of n agents on k pure strategies
is a combination with repetition, hence the number of profiles in a heuristic payoff table is given by:(

n+ k − 1
n

)
The payoffs of these discrete profiles can be measured in many domains, e.g. in auctions. However, mea-
surements do not allow to capture the payoff to strategies that are not present, i.e. whenever Ns = 0 then
Us(N) is unknown for that discrete profile. Table 1 shows the heuristic payoff table obtained from the
experiments described in Section 4, indicating unknown payoffs with a dash.

The heuristic payoff table only delivers a snapshot of the game payoffs under fixed discrete profiles and
does not yet assume adaptive agents. It is a merely descriptive representation of the conditions and the game
dynamics need to be deduced using models on top of that. One opportunity to do so is the approximation of

Table 1: The first six rows give the transposed heuristic payoff table of a clearing house auction with 6
agents and the three strategies ZIP, MRE and GD. Each column gives a discrete profile N over the trading
strategies and the corresponding payoff vector U(N). Below, the deviation for the reconstructed payoff table
from the normal form game representation is given which is discussed in Section 4. It features a maximal
absolute deviation of 6.64% and a root mean squared error of 2.96%.

NZIP 6 5 5 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0
NMRE 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0
NGD 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6

UZIP 99 97 89 96 90 85 97 87 85 76 97 91 84 78 62 97 93 86 73 73 56 - - - - - - -
UMRE - 100 - 94 88 - 92 90 80 - 96 91 83 70 - 97 89 84 71 57 - 94 91 84 75 65 43 -
UGD - - 69 - 65 69 - 64 73 73 - 66 67 76 80 - 62 69 75 77 80 - 62 67 71 76 79 79

∆UZIP 6 3 3 1 3 6 0 −2 4 3 −2 1 2 4 −4 −3 2 2 −3 6 −3 - - - - - - -
∆UMRE - 5 - −1 3 - −4 4 4 - −1 4 7 3 - −1 1 7 4 0 - −4 2 6 6 6 −5 -
∆UGD - - 1 - −2 −1 - −2 3 0 - 1 −1 4 4 - −2 1 4 3 1 - −1 0 1 2 2 −2
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the heuristic payoff table by a normal form game which allows to draw on the classical means from game
theory to derive strategic choices (see Sections 3.2 and 5.2).

2.3 Replicator dynamics
Replicator dynamics describe game dynamics from an evolutionary perspective. Evolutionary game theory
assumes an infinitely large population of individuals that choose their pure strategy according to some prob-
ability distribution. It assumes this population to evolve such that successful strategies with higher payoffs
grow while less successful ones decay and it suggests to analyze the asymptotic behavior [4].

Evolutionary game theory takes a rather descriptive perspective replacing hyper-rationality from clas-
sical game theory by the concept of natural selection from biology. The evolutionary pressure by natural
selection can be modeled by the replicator equations. Symmetric games only require the single-population
replicator dynamics that define the growth of a strategy proportional to the fraction of the population that
already uses this strategy and the difference between the payoff to this strategy and the average payoff.

The game dynamics for the normal form game with payoff matrix A can be calculated for strategy i
given that the opponent mixes over the pure strategies according to the probability vector x:

ẋi = xi · [(Ax)i − xAx] (1)

It is also possible to construct the replicator dynamics from the heuristic payoff table immediately. To
achieve this, the probability of each discrete profile for a finite population where each agent independently
chooses its strategy according to some probability distribution needs to be calculated. This is a multinomial
process for which the probability of the discrete profile N given the mixed strategy p can be computed as:

Pr(N |p) =
(

n

N1, . . . Nk

)
· pN1

1 · . . . · pNk

k (2)

The payoff for each strategy can then be computed as the weighted average over the payoffs received in all
profiles. However, a correction term is required if the payoffs for non-occurring strategies are unknown in
the heuristic payoff table.

Uaverage,i =
∑
N Pr(N |p) · Ui(N)

1− Pr(unknown|i) (3)

The resulting dynamics can be visualized in a vector field plot as in Figure 2 where the arrows indicate the
direction of change and the length of an arrow is proportional to |ẋ|.

The replicator dynamics give rise to a dynamical system which may feature repellers and attractors of
which the latter are of particular importance to the analysis of asymptotic behavior. Each attractor consumes
a certain amount of the strategy space that eventually converges to it - this space is also called the basin of
attraction. Assuming that an evolutionary process may start uniformly at any point in the strategy space,
the size of the basin of attraction may be used to estimate the practical importance of an attractor. This can
be achieved by uniform sampling of the strategy space and analysis of trajectory convergence, or under the
assumption of continuous dynamics by grid sampling of the strategy space and a graph labeling algorithm.
The latter applied to the given replicator dynamics leads to the basins of attraction depicted in Figure 4. A
good approximation of the game dynamics should naturally have minimal impact on the basins of attraction.

3 Methodology
The conversion of a normal form game to a heuristic payoff table is straight forward. This gives raise to the
question whether the inverse is also possible. However, the inverse transformation is over constrained and
a heuristic payoff table can only be approximated by a normal form game. This section presents the newly
proposed method to use linear programming for finding a suitable normal form game approximation.

3.1 From normal form games to heuristic payoff tables
The heuristic payoff table lists all possible discrete profiles with the average payoff of playing against a finite
population that mixes accordingly. The payoff vector against the mixed strategy p can be computed from
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the payoff matrix A as Ap. Given a matrix D where each row corresponds to a discrete profile N we can
compute the matrix U that then yields the corresponding payoff vectors U(N) as rows:

U =
1
n
·D ·AT (4)

The heuristic payoff table is the compound of the discrete profiles D and the corresponding average payoffs
given by U .

3.2 From heuristic payoff tables to normal form games
While the previous section has shown the transition from a normal form game to a heuristic payoff table, this
section will reverse this step. However, the equation cannot simply be reversed as the values in the heuristic
payoff table may be noise-prone due to stochasticity in the experiments and may also feature non-linear
dynamics. Although this leads to an over-constrained system of equations, an approximation with minimal
maximum absolute deviation can be found using linear programming.

Linear programming optimizes a linear goal function subject to a system of linear inequalities. The
following program can be formulated in order to approximate a heuristic payoff table, where D is a matrix
with all discrete profiles as rows, U is a matrix that yields the payoff vectors corresponding to D, P = 1

n ·D
maps the discrete profiles to probabilities and M is the payoff matrix of the game that we search:

min. ε

s.t. P ·MT ≤ U + ε

P ·MT ≥ U − ε
(5)

However, this notation needs to be transformed to standard notation in order to apply common algorithms

from the linear programming literature. Let c = (1, 0, 0, . . . , 0), x = (ε,Mi), A =

 −1
...
−1

P
−P


and b =

(
Ui
−Ui

)
where Mi is the i’th row of the payoff matrix to find and Ui is the i’th column of the

payoff matrix. Then, this linear program can be solved in standard notation:

min. c · xT
s.t. A · xT ≤ b (6)

In order to approximate the heuristic payoff table, we need to solve k linear programs to compute the
complete normal form matrix.

4 Experiments
This section presents the experimental setup and results of measuring the information loss in the normal
form game approximation of a heuristic payoff table from the auction domain. The heuristic payoff table
given in Table 1 is obtained by simulating auctions with the Java Auction Simulator API (JASA) [11]. This
empirical platform contains the trading strategies ZIP, MRE and GD which were set up with the following
parameters, according to [1, 5, 8]: ZIP uses a learning rate of 0.3, a momentum of 0.05 and a JASA specific
scaling of 0.2, MRE chooses between 40 discrete prices using a recency parameter of 0.1, an exploration of
0.2 and scaling of 9 and GD evaluates prices up to 360.

The heuristic payoff table is obtained from an average over 2000 iterations of clearing house auctions
with 6 traders. On the start of each auction, all traders are initialized without knowledge of previous auctions
and with a private value drawn from the same distribution as in [14], i.e. an integer lower bound b is drawn
uniformly from [61, 160] and the upper bound from [b + 60, b + 209] for each buyer. The sellers’ private
values are initialized similarly. These private values then remain fixed over the course of the auction which
runs 300 rounds on each of 5 trading days where each trader is entitled to trade one item per day.
The heuristic payoff table is approximated with a linear program as described in Section 3.2 which leads
to the normal form game representation given in Figure 3. This normal form representation is transformed
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ZIP

MRE

GD ZIP

MRE
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Figure 2: This figure shows the original replicator dynamics from the heuristic payoff table (left) and those
from the normal form game approximation (right) in the clearing house auction.

ZIP MRE GD
ZIP 93.8 102.7 52.9
MRE 94.9 100.0 38.3
GD 66.2 60.5 81.8

Figure 3: The symmetric two-player normal form game approximation of the heuristic payoff table for a
clearing house auction with the three strategies ZIP, MRE and GD.

back into a heuristic payoff table as described in Section 3.1 and compared to the original table, leading to
the differences indicated by ∆Us in Table 1. Furthermore, the replicator dynamics are derived from both
tables and compared in Figure 2. A more intuitive interpretation is given in Figure 4 which shows the basins
of attraction that arise from the replicator dynamics.

Figure 2 shows that the differences in the replicator dynamics are very small and can hardly be observed
by inspection of the vector field plots. Therefore, Figure 4 visualizes the basins of attraction which show a
clear qualitative correspondence of the dynamics in the observed heuristic payoff table and the reconstruction
from the normal form approximation. Only one mixed attractor moves slightly but this hardly impacts its
basin of attraction. In the context of evolutionary game theory, evolutionary stable strategies provide a
concept to find stable solutions in normal form games. The attractor (0, 0, 1) which corresponds to a pure
population of GD and the attractor (0.7, 0.3, 0) are evolutionary stable in the normal form game and predict
the attractors that are observed in the auction game dynamics.

5 Discussion
The results show that heuristic payoff tables in the domain of auctions may be approximated by normal
form games with a reasonably small error. However, this case study is rather a proof of concept and does not
necessarily generalize. Therefore, this section starts with a discussion of the limitations of this approach.
Eventually, leveraging the newly gained insights for strategic choice is illustrated.

1

2

3

4

5ZIP

MRE

GD 1

2

3

4

5ZIP

MRE

GD

Figure 4: This figure shows the basins of attraction of the heuristic payoff table (left) and of the normal
form game approximation (right) in the clearing house auction.
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NZIP 5 4 4 3 3 3 2 2 2 2 1 1 1 1 1
NMRE 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0
NGD 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5
Uaverage 74.9 72.3 74.1 70.7 76.4 74.0 73.9 72.5 76.8 74.5 71.3 74.1 74.5 76.1 72.5

Table 2: The average payoffs of the optimal strategy π∗ = (0.3, 0, 0.7) against all discrete profiles for which
the payoffs for the strategies ZIP and GD are known. The lower bound is given by 70.7 against the profile
Nmin = (3, 2, 1) and the average is 73.9.

5.1 Limitations of the approximation
The proposed approach can be applied to any number of strategies. However, the approximation of heuristic
payoff tables by normal form games imposes a less complex model on the data, which may be an oversim-
plification for the actual dynamics. Consequently, the precision of the approximation is likely to deteriorate
when the number of trading strategies to choose from is increased.

5.2 Strategic choice
Consider the normal form representation of the auction game as given in Figure 3. It is possible to derive an
optimal strategy that gives a lower bound on the profit that can be guaranteed even if nothing is known about
the opponents. This profit is also known as the matrix game value and can be determined with standard
algorithms from game theory. It equals 73.1 for this example and can be guaranteed by the optimal strategy
π∗ = (0.3, 0, 0.7). This means that a rational trader who is playing ZIP with probability 0.3 and GD with
probability 0.7 will get an expected payoff of at least 73.1 against any opponent that mixes between ZIP,
MRE and GD. For any other probability distribution than π∗, he may encounter an opponent that gives him
a lower expected payoff1.

In order to validate these results, the optimal strategy may be applied to compute the average payoff
against the distributions given in the heuristic payoff table. However, we need to restrict the consideration
to those profiles for which all trading strategies that are used in the optimal strategy are present. Only then,
the payoffs are known and the average can be computed accurately from the heuristic payoff table. These
average profits are given in Table 2 for all these profiles, resulting in a minimum of 70.7 which is close to
the approximated 73.1. Furthermore, the average overall profit against a uniformly distributed population
is as high as 73.9. Calculation of the matrix game value and the optimal strategy can be achieved by
linear programming since the agent simply wants to choose his probabilities in such a way that the minimal
payoff over all columns is maximized, i.e. he is maximizing a linear function with respect to some linear
inequalities.

If an agent knew the current actual mix of trading strategies in the population he faces, he could even
make more than with the optimal strategy because the optimal strategy is based upon a worst case analysis.
Under the assumption that all agents are have the same goal and the payoff matrix is known to all other
agents as well, one can further assume that all other agents apply a similar reasoning and arrive at the same
probability distribution. Therefore, a symmetric evolutionary equilibrium is more interesting in this context,
especially if we want to understand how the distribution of traders will look like in the long run.

6 Conclusions
This article has modeled trading in auctions by considering a population of traders that repeatedly participate
in an auction. A set of trading strategies is made available to the agents who make their choice according to
the relative profit of these strategies.

The contributions can be summarized as follows: A methodology to approximate heuristic payoff tables
by normal form games has been introduced. This smaller game representation is easier to analyze and fills
in a gap of missing payoffs in the blind spots of the heuristic payoff table. Rather than merely participating
myopically, a rational agent can now inspect the game strategically and reasoning from game theory can be
applied.

1Note that the optimal strategy is not symmetric and therefore does not appear in the replicator dynamics.
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The progress that has been made gives room for interesting opportunities. This approach needs to be
tested on other auctions and domains, possibly applying it to higher dimensions as it is general in the number
of strategies. This would allow inspecting the game in auctions that yield more than 3 strategies which cannot
be visualized easily. Another direction extends the game theoretic analysis, e.g. investigate symmetric
equilibria analytically in the normal form game. Furthermore, we aim to argue for the described approach
on a more theoretical level and look for structure in the deviation from the linear model, in particular where
and why qualitative changes occur.
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