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Abstract

Auctions are pervasive in today’s society and provide a va-
riety of real markets. This article facilitates a strategic
choice between a set of available trading strategies by in-
troducing a methodology to approximate heuristic payoff ta-
bles by normal form games. An example from the auction
domain is transformed by this means and an evolutionary
game theory analysis is applied subsequently. The informa-
tion loss in the normal form approximation is shown to be
reasonably small such that the concise normal form repre-
sentation can be leveraged in order to make strategic deci-
sions in auctions. In particular, a mix of trading strategies
that guarantees a certain profit is computed and further ap-
plications are indicated.

1. Introduction

Auctions are deployed in a variety of real markets to
foster highly efficient trading. They range from consumer-
to-consumer markets like eBay to government-to-business
auctions for mineral rights [3]. Buyers and sellers place of-
fers to indicate their intention to trade at a certain price. The
here considered clearing house auction proceeds in rounds
and polls offers from each trader each round. When all of-
fers are collected, an equilibrium price is established based
on the available offers such that demand meets supply at this
price. It is set to the average of the two offers that define the
range of possible equilibrium prices, i.e. the lowest bid and
the highest ask that can be matched in the equilibrium. The
good to be traded may have a different private value for
each trader. The difference between the transaction price
and the private value of the trading agent determines the
agent’s profit, assuming that buyers will not buy above and
sellers will not sell below their private value.

A multitude of trading strategies has been devised to
derive the next offer, possibly exploiting the knowledge
about offers and transactions that were observed in previ-
ous rounds. The experiment of this article considers three

trading strategies: Modified Roth-Erev (MRE), Zero Intelli-
gence Plus (ZIP) and Gjerstad and Dickhaut (GD). A survey
of these strategies can be found in [2]. Given a set of avail-
able trading strategies, it is of high interest which strategy
is best in the sense that it yields the highest expected pay-
off. However, this question cannot be answered in general
as the performance of a trading strategy is highly dependent
on the competition it faces [5].

A heuristic payoff table has been proposed to capture the
average profit of each type of trading strategy for all possi-
ble mixtures of strategies in the competition [7]. Although
the heuristic payoff table provides the basis for analyzing
the dynamics in auctions, it is unintuitive and lacks informa-
tion about the payoffs for strategies that are not yet present
in a population. The normal form game on the other hand
is more intuitive, e.g. allowing to compute optimal strate-
gies, best replies and Nash equilibria more easily. This arti-
cle shows how a normal form approximation of a heuristic
payoff table can be found using a linear least squares algo-
rithm or linear programming and illustrates the method by
an example from the auction domain. The results presented
below show a reasonably small error such that the approxi-
mation can be leveraged for strategic considerations and an
intuitive grasp of the game in auctions.

The remainder of this article is structured as follows:
Section 2 introduces the game theoretical background that
is required by the methodology presented in Section 3. Sub-
sequently, Section 4 illustrates the method by applying it to
an example from the auction domain. The results are dis-
cussed in Section 5 which also concludes this article.

2. Game theoretical background

Classical game theory is the mathematical study of
strategic conflicts of rational agents. A game comprises a
set of players I = {1, 2, . . . , n} and a set of available pure
strategies Si = {1, 2, . . . , ki} for each player i, for n and
ki some finite integer. In the context of auctions, each pure
strategy corresponds to a trading strategy.
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2.1. Normal form games

The players of normal form games are assumed to
choose their pure strategies simultaneously and indepen-
dently and receive a payoff that is dependent on the joint
strategy profile s ∈ S1 × . . .× Sn.

The payoff for symmetric two-player normal form games
can be described by matrix A, where for any joint strat-
egy (i, j), Aij denotes the payoff to player one and Aji
describes the payoff to player two. Both players seek to
maximize their expected payoff and optimal mixed strate-
gies can be derived such that a highest least profit v against
any opponent is guaranteed by randomizing over the pure
strategies. This profit v is also called the value of a game.

Within a matrix game, the player optimizes his expected
payoff against an opponent that plays according to a cer-
tain probability distribution. Similarly, he faces a field of
traders that are distributed over the strategies in reality. It
does not actually matter which opponent plays which strat-
egy but rather how many opponents deploy which strategy.
Assuming he encounters a random individual from the com-
petition, his opponent’s strategy will be drawn from the dis-
tribution of strategies in the competition. The opponent in
normal form games therefore resembles the competition in
which the agent is situated in reality.

2.2. Heuristic payoff tables

A heuristic payoff table may also be used to capture the
payoffs of a symmetric game. However, it requires a fi-
nite population of traders such that all possible combina-
tions of strategies can be evaluated. For an individual trader
it is only important to know how many of his opponents
are playing each of the different strategies. The distribu-
tion of n agents on k pure strategies is a combination with
repetition, hence a heuristic payoff table requires

(
n+k−1
n

)
rows. Each row yields a discrete profile N = (N1, . . . , Nk)
telling exactly how many agents play each strategy.

The payoffs of these discrete profiles can be measured in
many domains, e.g. in simulated auctions. However, mea-
surements do not allow to capture the payoff to strategies
that are not present, i.e. whenever Ni = 0 then Ui(N) is
unknown for that discrete profile. Table 1 shows a heuristic
payoff table obtained from an auction simulation, indicating
unknown payoffs with a dash.

2.3. Replicator dynamics

Evolutionary game theory assumes an infinitely large
population of individuals. In this population, each trader
may apply one of the available trading strategies. The pure
strategy i is played with probability xi, according to the vec-
tor x = (x1, . . . , xk). The profit of each trader depends on

x and may be interpreted as Darwinian fitness. From auc-
tion to auction, traders may switch their strategies, adopt-
ing successful strategies and dropping less successful ones.
This adaptation can be modeled by the replicator dynam-
ics from evolutionary game theory which are formally con-
nected to reinforcement learning [6]. Let πi(x) denote the
expected payoff to strategy i in the population playing ac-
cording to x. The replicator dynamics formally define the
population change over time:

ẋi = xi · [πi(x)− xπi(x)]

For the matrix game A, the expected payoff func-
tion π(x) = Ax is linear. The heuristic payoff ta-
ble may define more complex expected payoff functions.
Let the set of all discrete profiles be denoted as ν =
{(n, 0, . . . , 0), . . . , (0, . . . , 0, n)} and let µi = {N ∈
ν|Ni = 0} be the set of profiles where strategy i is not
played. Furthermore, let µ̄i = {N ∈ ν|Ni 6= 0} be the
complement of µi. The expected payoff can be computed
from the heuristic payoff table:

πi(x) =

∑
N∈µ̄i

Ui(N) ·
(

n
N1,...,Nk

)
· xN1

1 · . . . · x
Nk

k

1−
∑
N∈µi

(
n

N1,...,Nk

)
· xN1

1 · . . . · x
Nk

k

The resulting dynamics can be visualized in a force field
plot as in Figure 2, where the arrows indicate the direction
and strength of change. The replicator dynamics give rise
to a dynamical system which may feature repellers and at-
tractors of which the latter are of particular importance to
the analysis of asymptotic behavior. Each attractor con-
sumes a certain amount of the strategy space that eventually
converges to it — this space is also called the basin of at-
traction [1]. A good approximation of the game dynamics
should have minimal impact on the basins of attraction.

3. Methodology

This section presents the conversion from normal form
games to heuristic payoff tables and the newly proposed
method for finding a suitable normal form game approxi-
mation.

Table 1. Heuristic payoff table of a clearing
house auction

NZIP NMRE NGD UZIP UMRE UGD

6 0 0 99 - -
5 1 0 97 100 -

...
...

0 1 5 - 43 79
0 0 6 - - 79
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From normal form games to heuristic payoff tables
The heuristic payoff table lists all possible discrete pro-

files with the average payoff of playing against a finite pop-
ulation that mixes accordingly. The payoff vector against
the mixed strategy p can be computed from the matrix game
M asMp. LetD be the matrix where each row corresponds
to a discrete profile N of n agents and let P = 1

n ·D map
the discrete profiles to probabilities. The matrix

U = P ·MT (1)

yields the corresponding payoff vectors U(N) as rows. The
heuristic payoff tableH = (D,U) is the composition of the
discrete profiles and the corresponding payoffs.

Unfortunately, Equation (1) cannot simply be solved
for M as the values in the heuristic payoff table may be
noise-prone due to stochasticity in the experiments and may
also feature non-linear dynamics which leads to an over-
constrained system of equations. Therefore, it needs to be
approximated, e.g. by minimizing the mean squared error
or the maximal absolute deviation.

Minimizing mean squared error
A normal form game M that approximates the heuristic

payoff table H = (D,U) can be determined incrementally
for each row Mi by finding a least mean squared error fit
between the i’th column of U, denoted as Ui, and the recon-
structed payoff vector Ũi = P ·MT

i from the normal form
game, where P = 1

n ·D as above, by solving the minimiza-
tion problem:

min
Mi

∣∣∣∣∣∣Ui − Ũi∣∣∣∣∣∣
2

A standard linear least square fitting algorithm can be used
to solve this system for each row and compose the normal
form game matrix.

Minimizing maximal absolute deviation
Linear programming optimizes a linear goal function

subject to a system of linear inequalities. Using the same
definitions of the profile matrix D, the probability matrix
P , the game M and the payoff matrix U as above, the fol-
lowing program can be formulated.

minimize ε

variables ε,Mij , for i, j ∈ {1, . . . , k}
subject to P ·MT ≤ U + ε

P ·MT ≥ U − ε

However, this program needs to be transformed to standard
notation in order to apply common algorithms from linear
programming. For sake of convenience, each row Mi is de-
termined separately. Let c = (1, 0, . . . , 0) and x = (ε,Mi)
such that the goal function minimizes epsilon. Furthermore,

letA =

 −1
...
−1

P
−P

 and b =
(

Ui
−Ui

)
where Ui

is the i’th column of the payoff matrix. Then, this linear
program can be solved in standard notation:

min
x

c · xT subject to A · xT ≤ b, x ≥ 0

In order to approximate the heuristic payoff table, we need
to solve k linear programs to compute the complete normal
form matrix.

4. Experiments

This section presents the experimental setup and results
of measuring the information loss in the normal form game
approximation of a heuristic payoff table from the auction
domain. The heuristic payoff table given in Table 1 is ob-
tained by simulating auctions with the Java Auction Simu-
lator API (JASA) [4]. This empirical platform contains the
trading strategies ZIP, MRE and GD which were setup with
default parameters. The heuristic payoff table is obtained
from an average of 2000 iterations of clearing house auc-
tions. On the start of each auction, all traders are initialized
without knowledge of previous auctions and with a private
value drawn from the same distribution as in [7].

The heuristic payoff table is approximated as described
in Section 3, which leads to the normal form game repre-
sentations given in Figure 1. The replicator dynamics are
derived from the heuristic payoff table and the normal form
game representations and compared in Figure 2. There is a
clear qualitative correspondence of the dynamics that arise
from the three models.

A mixed attractor can be found at (0.81, 0.18, 0.0) for
the heuristic payoff table, at (1, 0, 0) in least mean squared
error fitting and at (0.72, 0.27, 0.0) in minimized maximal
absolute deviation. However, there are very similar basins
of attraction. The pure attractor at (0, 0, 1) is present in all
dynamics and is estimated to consume 26.0% of the strategy
space in the heuristic payoff table in comparison to 26.2%

Least mean squared error Least maximal absolute deviation
ZIP MRE GD

ZIP 97.4 98.8 52.3
MRE 96.8 98.6 42.6
GD 64.8 59.1 83.4

ZIP MRE GD
ZIP 93.8 102.7 52.9
MRE 94.9 100.0 38.3
GD 66.2 60.5 81.8

Figure 1. Symmetric two-player normal form game approximations of the heuristic payoff table
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Heuristic payoff table Least mean squared
error

Least maximal
absolute deviation

Figure 2. Comparison of replicator dynamics showing directional and force field plots

and 27.3% in the approximations, based on the analysis of
convergence of 1000 trajectories with uniformly sampled
starting points. The attractors are evolutionary stable in the
normal form game approximations and predict the attractors
that are observed in the auction game dynamics with a small
error. The maximal absolute deviation is 9.76% and 6.64%
while the square root of the mean squared error is 3.03%
and 3.42% respectively.

5. Discussion and conclusions

The results show that heuristic payoff tables in the do-
main of auctions may be approximated by normal form
games with a reasonably small error, using a case study of
an auction with n = 6 agents and k = 3 strategies. The
full representation of kn = 729 payoff entries was reduced
to a heuristic payoff table with k

(
n+k−1
n

)
= 84 payoff en-

tries, and then to a normal form game with k2 = 9 pay-
off entries. Consider the normal form representation of the
auction game obtained from minimizing the maximal abso-
lute deviation as given in Figure 1. The optimal strategy
π∗ = (0.3, 0, 0.7) guarantees an expected payoff of at least
73.1 against any combination of GD, ZIP an MRE. This
strategy could be used for risk averse trading, given that
traders stick to the given set of trading strategies.

The contributions can be summarized as follows: A
methodology to approximate heuristic payoff tables by nor-
mal form games has been introduced. This smaller repre-
sentation is more intuitive, computationally less expensive
to analyze and adds information about missing payoffs in
the heuristic payoff table. It can even be constructed from
partial heuristic payoff tables. Rather than merely partic-
ipating myopically, a rational agent can now inspect the
game strategically. With further refinements, this method

may become the basis of a more general framework for the
analysis of complex multi-agent games.
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