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Abstract

Auctions are pervasive in today’s society and provide a variety of markets,
ranging from government-to-business auctions for licenses to consumer-to-
consumer online auctions. The success of trading strategies in auctions is
highly dependent on the present competitors, hence traders are forced to
adapt to the competition to maintain a high level of performance. This
adaptation may be modeled by reinforcement learning algorithms, which
have a proven relation to evolutionary game theory.

This thesis facilitates a strategic choice between a set of predefined trad-
ing strategies. It is based on previous work, which suggests to capture the
payoff of trading strategies in a heuristic payoff table. A new methodology to
approximate heuristic payoff tables by normal form games is introduced, and
it is evaluated by a case study of a 6-agent clearing house auction. Learning
models of exploration and exploitation, that link to selection and mutation
in an evolutionary perspective, are subsequently applied to compare three
common automated trading strategies.

The information loss in the normal form approximation is shown to be
reasonably small, such that the concise normal form representation can be
used to derive strategic decisions in auctions. Furthermore, the learning
model shows that learners with exploration may converge to different strate-
gies than learners of pure exploitation.

The devised methodology establishes a bridge between empirical data in
heuristic payoff tables and the means from classical game theory. It might
therefore become the basis for a more general framework to analyze strategic
interactions in complex multi-agent systems.

Keywords: Auctions, Multi-agent learning, Evolutionary game theory
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Chapter 1

Introduction

Auctions are deployed in a variety of real markets to foster highly effi-
cient trading. They range from consumer-to-consumer markets like eBay
and business-to-business stock exchanges to government-to-business auc-
tions for mineral rights or government licenses for the telecommunications
spectrum [16, 22]. Furthermore, auction mechanisms have been transferred
successfully to solve other resource allocation problems, e.g. in the domain
of efficient internet traffic routing [26]. Despite this diversity, even single
markets of enormous scale may have profound impact on society, e.g. the
New York Stock Exchange reported a trading volume of 11, 060 billion USD
in 2000 [8]. Hence, auctions are pervasive in today’s society which motivates
strong research interests.

The Santa Fe trading competition has pitted a variety of trading strate-
gies against each other. It has demonstrated that the performance of trading
strategies within auctions depends largely on the present competitors [27].
A strategy called KAPLAN won the Santa Fe tournament by withholding
from the auction until the price has almost converged or the time is run-
ning out and then placing bids that are just high enough to outperform its
competitors. Despite its high performance against many other strategies,
its advantage dwindles the more agents adopt it [39].

A generally best strategy does not exist. Hence, traders cannot rely on
finding one perfect trading strategy and apply it at all times. They rather
need to adapt to changing circumstances and apply a trading strategy that
is a best reply to the current competition. In other words, they need to learn
which strategy gives them the highest payoff under the current conditions.

It is realistic to assume that the participants in auctions do not know
which trading strategies are used by other traders. Unless the competi-
tors’ trading strategies can be identified from the bid and shout patterns
that the traders exhibit, the learning process needs to be solely based on
the payoff a trader perceives by applying a trading strategy in an auc-
tion. The trading agents’ learning processes may therefore be modeled

1



2 CHAPTER 1. INTRODUCTION

by reinforcement learning, for which a variety of algorithms has been de-
vised [18, 40, 32]. The average learning behavior of these algorithms can be
described by the replicator dynamics, a mathematical model from the field
of evolutionary game theory. While reinforcement learning studies learn-
ing on an individual level, evolutionary game theory gives an intuition on
the high level learning dynamics. It allows to analyze under which circum-
stances agents switch or should switch their strategies. Furthermore, the
behavior of agents who learned for a sufficiently long time can be predicted.
The relative strength of trading strategies can then be estimated from the
probability of being used in the long run. In this way, the learning model
facilitates a comparison of a set of trading strategies in auctions.

1.1 Related work

A variety of authors have studied auctions due to their economical rele-
vance [12, 24, 38, 39]. Early laboratory experiments conducted by Smith
have shown that even “about three active [human] buyers and sellers” con-
verge to equilibrium prices by which high efficiency is attained [31]. This
disproofs the previous assumption that large scale markets are required for
efficient trading. For simplicity, the case study presented in this thesis is
restricted to an auction with 6 traders.

Vickrey pioneered in the approach of modeling auctions as games of in-
complete information. He showed that the second price sealed-bid auctions
are strategy proof, i.e. rational traders reveal their true valuation [38]. On
the one hand, it is not clear how to model more sophisticated auctions in
order to apply a game theoretical analysis which computes Nash equilib-
ria [39]. On the other hand, mechanisms that can be modeled may yield
many equilibria. The contemporary theory does not determine which of
them will eventually be played or how to coordinate on one [17]. Theoret-
ical solution concepts like the Nash equilibrium may also be inapplicable
because real traders may not be rational or fail to compute the equilibrium
adequately. As a result, research increasingly turns to empirical simulation
to evaluate properties of trading strategies and auctions [33].

The empirical approach provides powerful means to analyze, predict and
control the behavior of self-interested agents [6]. The study of simulation
allows insights into realistic and complex auction problems that would render
many theoretical approaches intractable. A variety of trading strategies has
been formalized in the form of computer algorithms [4, 7, 11]. The available
algorithms allow to study the learning behavior by simulating auctions with
traders who choose between a set of available trading strategies and learn
which one to apply. In contrast to experiments with human subjects, this
methodology is cost-effective, more reliable (stochastic influences can be
eliminated by high numbers of iterations), deterministic (using seeds for
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pseudo-random numbers) and thereby reproducible. For these benefits, it is
used in this thesis to analyze strategic behavior in auctions.

The payoff information that is gathered from auction simulation needs to
be captured for further analysis. When n agents decide between k strategies,
there are kn possible combined decisions. This number grows exponentially
in the number of agents and storing all payoffs is intractable for realistic
values of n. Fortunately, it is reasonable to assume that the trading agents
are interchangeable, i.e. all trading strategies are equally good for each
agent. This allows to exploit the symmetric property of auctions. It is not
important who uses which strategy but merely how many opponents use
which strategies. Walsh proposed to capture the average payoff to each type
of trading strategy, given the different compositions of the competition, in
a heuristic payoff table [39]. Several authors have adopted these tables as
a basis for the analysis of auctions [15, 25] and it will also be the starting
point for the analysis in this thesis.

A heuristic payoff table captures the payoffs of trading strategies in
auctions, but it requires further mathematical analysis to predict strate-
gic behavior of trading agents. Evolutionary game theory assumes that a
population of traders will adopt successful trading strategies and drop less
successful ones. It has been used to compare market mechanisms [25] and to
automatically devise new trading strategies [24]. A theoretical link between
reinforcement learning and evolutionary game theory has been established
for Cross learning, which maps to a selection model [2], and has been ex-
tended to Q-learning, which maps to a selection-mutation model [35]. This
implies that means from evolutionary game theory can be applied to study
multi-agent learning [34]. As human learning features phases of exploration
and exploitation, a selection-mutation model is used in this thesis to model
strategic behavior of trading agents.

1.2 Problem definition and research questions

The payoffs defined by the heuristic payoff tables need an interpretation.
Previous research has used evolutionary selection models to model adaptive
interactions of trading agents in auctions. Although the toolbox of game
theory is much richer than that, other means can not easily be applied
to heuristic payoff tables. These methods are either too computationally
expensive or not defined for this representation of payoffs. This leads to the
following two research questions:

• How can the payoff information captured by heuristic payoff tables be
made more accessible for a deeper analysis by means of game theory?

• How does adding mutation to the replicator dynamics influence the
strategic behavior in auctions?
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Many means from game theory are best studied for the normal form
representation of payoffs, suggesting the question whether heuristic payoff
tables can be approximated by normal form games. This thesis presents
two methods to find such an approximation: Using linear programming
(minimizing the maximum absolute deviation of the approximation) and a
standard least mean squares algorithm (minimizing the mean squared error).
In order to answer the problem statement, the following refined research
questions are answered by performing an empirical study:

• Calculate the heuristic payoff table for an auction with 6 agents who
may choose between several trading strategies.

• Which approximations result from the proposed methodology?

• How do these approximations differ quantitatively, in the payoffs they
define, and qualitatively, in the predictions that result from the learn-
ing model?

• How does mutation in the evolutionary analysis alter the learning dy-
namics?

• What happens when learning is applied with decreasing exploration?

Results of the performed empirical study show a reasonably small error
in the approximation which justifies using the approximation for strategic
considerations and an intuitive grasp of the game in auctions.

1.3 Outline

The remainder of this thesis is divided into two parts: The first part lays
the theoretical foundation for the analysis of games based on heuristic payoff
tables while the second part describes an application to the auction domain.

The theoretical part presents the required background for the empirical
study of the research questions. It comprises game theoretical background
in Chapter 2, concepts from reinforcement learning in Chapter 3 and the
proposed methodology to approximate heuristic payoff tables by normal
form games, which is given in Chapter 4.

The empirical part first presents the relevant auction type and trading
strategies in Chapter 5. These are used in the experiments, for which setup
and results are described in Chapter 6. The results are interpreted and
discussed in Chapter 7, which also concludes this thesis.



Part I

Theory of games and
learning
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Chapter 2

Game theoretical background

Game theory introduces games as formal models to study strategic inter-
actions. It emerged from the investigation of strategic conflicts, e.g. in
economics and war, and was founded by John von Neumann and Oskar
Morgenstern who published the first important book in this discipline in
1944 [1, 37]. Since then, the theory has been enriched by many contributors.
Among them John Nash, who introduced what is now known as the Nash
Equilibrium (NE) in 1951 [19] and John Maynard Smith, who contributed
the notion of evolutionary stable strategies in 1973 [30].

This chapter first takes the perspective of classical game theory and
introduces the normal form game, the solution concept of the Nash equilib-
rium, optimal strategies and the matrix game value. Selected examples are
given and used to illustrate the concepts. Subsequently, the point of view
is shifted to evolutionary game theory. The replicator dynamics and evolu-
tionary stable strategies are explained and an example is given by the game
Rock-Paper-Scissors. The chapter is concluded by a description of heuristic
payoff tables, which are compressed representations for symmetric games.
The definitions of this chapter are based on [9, 10, 14, 39, 41].

2.1 Classical game theory

Classical game theory is the mathematical study of strategic interactions
between rational agents. There are two predominant representations for
games, the extensive and the normal form. The extensive form describes
how the game is played over time in a game tree. The outcome is captured
in a single value for each player, the utility that denotes the preference of
that player for that outcome. In this thesis, the terms reward or payoff are
used as synonyms of utility or preference. Any extensive form game can be
transformed into a normal form game and the considered stateless games
are more naturally modeled in normal form. Therefore, only normal form
games are considered in this thesis.

7
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2.1.1 Normal form games

In normal form games, the players are assumed to choose their actions, or
pure strategies, simultaneously and independently. Let I = {1, . . . , n} be
the set of n players, where n is a positive integer. For each player i, let
Si denote the set of available pure strategies. For notational convenience,
every players’ pure strategies will be labeled with positive integers, i.e. Si =
{1, 2, . . . , ki} for some integer ki ≥ 2. Let si take on the value of a particular
pure strategy j for player i. A pure strategy profile is an n-tuple s =
(s1, . . . , sn) that associates one pure strategy with each player. Furthermore,
let s−i = (s1, . . . , si−1, si+1, . . . , sn) denote the same profile without the
strategy of player i, so that (si, s−i) forms a complete profile of strategies.
The pure strategy space is the cartesian product of the players’ pure strategy
sets S = ×iSi.

Let ui : S 7→ < denote the payoff function of player i, i.e. for any strategy
profile s ∈ S and player i ∈ I, let ui(s) be the associated payoff to player
i. The combined payoff function u : S 7→ Rn assigns to each pure strategy
profile s the full payoff vector u(s) = (u1(s), . . . , un(s)).

An n-player normal form game G may be summarized as the tuple G =
〈I, S, u〉, where I is the set of players, S is the pure strategy space and u is
the combined payoff function. Two-agent games are often labeled with the
number of actions for each player, e.g. a 2 x 2 game refers to a two-player
game with two actions for both players.

Policy

As normal form games are stateless, the behavior of each player can be
described by a probability vector πi, that assigns a probability to each pure
strategy. This probability vector is also called policy or mixed strategy. Let
πi,j denote the probability of player i to play the pure strategy j.

πi : Si → [0, 1] such that
∑
j∈Si

πi,j = 1

Let π = (π1, . . . , πn) denote the mixed strategy profile. Furthermore, let
π−i = (π1, . . . , πi−1, πi+1, . . . , πn) denote the same profile without player i’s
policy.

Expected payoff

Let vi(π) denote the expected payoff for playing policy πi against the set of
opponents’ mixed strategies π−i. It can be computed from the sum over the
utilities of all possible pure strategy profiles, multiplied by their probability:

vi(π) = E(ui|π) =
∑
s∈S

ui(s)
∏
m∈I

πm,sm
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2.1.2 Solution concepts

The solution concepts of game theory prescribe the behavior of rational
agents and provide a more specific characterization of normal form games.

Best response

The best response is the set of policies that have the maximal possible reward
given all other players’ policies. Due to rationality, all players are assumed
to pick the best action available to them. A mixed strategy π is a best
response of player i if there is no other mixed strategy π′ that would lead to
a higher reward for this player, given that all other players’ strategies π−i
remain the same.

BR(π−i) = πi iff ∀π′i : vi(πi|π−i) ≥ vi(π′i|π−i)

Nash equilibrium

A Nash equilibrium is a strategy profile for which no player can improve
his payoff by changing his policy while the other players keep their policies
fixed. It is a tuple of policies π∗ = (π∗1, . . . , π

∗
n) such that no player has an

incentive for unilateral deviation, that is every strategy π∗i is a best response
to π∗−i:

π∗i = arg max
πi

vi(πi|π∗−i)

Nash equilibria are the primary concept to derive rational behavior in com-
petitive games. For cooperative games, Pareto optimality is of primary
interest.

Pareto optimality

A strategy profile π Pareto dominates π′ if and only if all players obtain
at least the same reward and at least one player receives a strictly higher
reward when π is played.

π Pareto dominates π′

iff ∀i∃j : vi(π) ≥ vi(π′) ∧ vj(π) > vj(π′)

A strategy profile π is Pareto optimal if it is not Pareto dominated.

Optimal strategies and the matrix game value

An optimal strategy π+ assures a certain payoff against any possible oppo-
nent. For any other policy than π+, he may encounter an opponent that
gives him a lower expected payoff. In other words, an optimal strategy is a
best reply to a malicious opponent, that tries to minimize one’s payoff:

π+
i = arg max

πi

min
π−i

v(πi|π−i)
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The value of a matrix game is defined as the payoff that the optimal strategy
guarantees:

value = max
πi

min
π−i

v(πi|π−i)

The optimal strategy is not generally a best reply against the opponents’
policies but rather guarantees a best worst case. Therefore, an agent could
even obtain more payoff than with the optimal strategy if he would know
the actual current mix of strategies he faces.

2.1.3 Examples

Three representative examples of 2 x 2 games are discussed in this section.
Based on the general representation given in Figure 2.1, 2 x 2 games can be
divided into the following three subclasses [35]:

Subclass 1

If (a11 − a21)(a12 − a22) > 0 or (b11 − b21)(b12 − b22) > 0 there
exists at least one dominant strategy and therefore only one pure
equilibrium. The only exception: Let player i have a dominant strat-
egy si and the other player j obtain u(sj |si) = x ∀sj , then there are
infinitely many equilibria where player j mixes arbitrarily between
his actions.

Subclass 2

If (a11 − a21)(a12 − a22) < 0 , (b11 − b21)(b12 − b22) < 0 and
(a11 − a21)(b11 − b12) > 0 there are two pure and one mixed

equilibrium.

Subclass 3

If (a11 − a21)(a12 − a22) < 0 , (b11 − b21)(b12 − b22) < 0 and
(a11 − a21)(b11 − b12) < 0 there is just one mixed equilibrium.

Next, one example of each subclass will be discussed.

Left Right
Top a11, b11 a12, b12

Bottom a21, b21 a22, b22

Figure 2.1: General payoff bi-matrix (A,B) for two-agent two-action
games, where A and B define the payoff to player 1 and 2 respectively.
The first player chooses a row, the second player chooses a column.
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D C
D 3, 3 0, 5
C 5, 0 1, 1∗

Figure 2.2: Payoff matrices for the Prisoners’ Dilemma (Deny or Confess).
The less the agents like the outcome, the lower the payoff.

The Prisoners’ Dilemma

Two criminals are interrogated for a crime they committed together.
The police keeps them in separate rooms such that they have no means
of communication. Both are offered the same choice; they may either
confess the crime or deny testimony. If both criminals deny, they will be
charged for illegal possession of weapons and go to jail for a short time.
If they confess while their partner denies, they are promised to go free
while their partner has to serve a long sentence. However, if both confess,
they will serve a mediocre sentence together. What will the criminals do
assuming they are rational?

The Prisoners’ Dilemma is a symmetric game with one Nash equilibrium
(C,C). This example demonstrates that not every Nash equilibrium is
Pareto optimal. In particular, (C,C) with utilities (1, 1) is Pareto domi-
nated by (D,D) with utilities (3, 3), which is not a Nash equilibrium.

Battle of Sexes

A couple decided to go out together at night. However, they forgot
to agree whether they go to the football match or watch a play at the
theater. They have no means of communication before the event and need
to decide independently where to spend their evening. The man prefers
to meet at the stadium while the woman would prefer the theater, but
both will only enjoy their evening if they meet their partner.

F T
F 2, 1∗ 0, 0
T 0, 0 1, 2∗

Figure 2.3: Payoff matrices for Battle of Sexes (Football or Theater).
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Battle of Sexes yields two pure equilibria at (B,B) with payoffs (2, 1) and
(S, S) with payoffs (1, 2) and one mixed equilibrium where player 1 mixes be-
tween the actions (2

3 ,
1
3) and player two mixes (1

3 ,
2
3) which leads to expected

payoffs (2
3 ,

2
3). All three Nash equilibria are Pareto optimal.

Matching Pennies

H T
H 1,−1 −1, 1
T −1, 1 1,−1

Figure 2.4: Payoff matrices for Matching Pennies (Head or Tail).

Matching Pennies originates from a gambling game. Two players simul-
taneously reveal a coin each, either showing head or tail. If they reveal
the same side of the coin the first player gets both coins, otherwise the
second player wins.

In the mixed Nash equilibrium of Matching Pennies both players mix both
actions equally and obtain expected rewards (0, 0) which is Pareto optimal.

2.2 Evolutionary game theory

Classical game theory assumes rationality. This implies, that each player is
assumed to be absolutely self interested, capable and willing to consider all
possible outcomes of the game and to select a strategy that maximizes his
expected payoff. One of the main criticisms against classical game theory is
the surrealism of that assumption, because this hyper-rationality does not
always apply, especially not to humans.

Evolutionary game theory takes a rather descriptive perspective, replac-
ing hyper-rationality from classical game theory by the concept of natural
selection from biology [29]. The two central concepts of evolutionary game
theory are the replicator dynamics and evolutionary stable strategies. The
replicator dynamics presented in the next section describe the evolutionary
change in the population. They are a set of differential equations that are
derived from biological operators such as selection, mutation and cross-over.
The evolutionary stable strategy describe the resulting asymptotic behavior
of this population. For a detailed discussion, we refer the interested reader
to [13, 14].
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2.2.1 Replicator dynamics

A population comprises a set of individuals, where the species that an indi-
vidual can belong to represent the pure strategies. The utility function can
be interpreted as the Darwinian fitness of each species. The distribution
of the individuals on the different strategies can be described by a proba-
bility vector that is equivalent to a policy. Hence, there is a second view
on the evolutionary process: The population may also represent competing
strategies within the mind of one agent, who learns which one to apply.

The evolutionary pressure by natural selection can be modeled by the
replicator equations. They assume this population to evolve such that suc-
cessful strategies with higher payoffs grow while less successful ones decay.

Single-population replicator dynamics

Let the individuals of the population be distributed over the pure strategies
according to the probability vector π1. As there is only one population, the
index 1 from π1,j will be dropped for the sake of clarity, i.e. π = (π1, . . . , πk),
where πj denotes the probability of strategy j to be played. The single-
population replicator dynamics assume that two individuals are randomly
drawn from the same population. These two individuals then play a game,
which determines their fitness. Let S1 = S2 = {1, . . . , k} be the available
strategies and S = S1 × S2 denote the joint strategy space. Similar to
the expected payoff for a two-player game, the expected payoff for policy
π against population π̄ is computed as v(π|π̄) =

∑
s∈S u(s)πs1 π̄s2 . The

evolution under natural selection can be modeled by the following system of
equations, where ej denotes the j’th unit vector:

dπj
dt

= πj

[
v(ej |π)︸ ︷︷ ︸

fitness of j

− v(π|π)︸ ︷︷ ︸
average fitness

]
(2.1)

When the payoff function u is given in form of a matrix A, i.e. v(π|π̄) =
πAπ̄T , this equation simplifies to:

dπj
dt

= πj

[
ejAπ

T − πAπT
]

(2.2)

Hofbauer and Sigmund have extended the selection model to account for
mutation [14]. Let Q be the mutation matrix where Qjh denotes the prob-
ability of an agent of species j to mutate to species h, i.e. he switches his
pure strategy from j to h. The dynamics can be computed as:

dπj
dt

= πj

[
v(ej |π)− v(π|π)

]
+ πQeTj︸ ︷︷ ︸

incoming

− ejQπT︸ ︷︷ ︸
leaving

(2.3)
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For any symmetric matrix Q, i.e. Q = QT , we have Qej = (ejQ)T and
the mutation terms cancel out. Equation (2.3) reduces to the pure selection
model defined by Equation (2.1).

While the mutation defined by matrix Q describes imitation learning,
the selection-mutation model derived in [35] describes the average learning
behavior of Q-learning. Let α denote the learning rate and let τ denote
the temperature parameter of the Q-learning algorithm. The temperature
in the replicator equations balances selection and mutation, mapping to
exploitation and exploration in the learning algorithm:

dπj
dt

= απj

[
τ−1

[
v(ej |π)− v(π|π)

]︸ ︷︷ ︸
selection

+π log πT − log πj︸ ︷︷ ︸
mutation

]
(2.4)

This selection-mutation model of evolution is used in this thesis to model
learning with exploration, as it allows to tune the amount of exploration with
a single temperature parameter. In particular, it is used in Section 6.3.2 to
describe strategic behavior in auctions.

Multi-population replicator dynamics

The replicator dynamics can also model several independent learning pro-
cesses. Therefore, they need to be extended to a multi-population model,
where each population can be regarded as a policy of an agent. The multi-
population replicator dynamics assumes that two individuals, i.e. pure
strategies, are randomly drawn from two different populations. These two
individuals then play a game, which determines their fitness. Let π1 and
π2 denote the distribution of individuals over the pure strategies in popu-
lation 1 and 2. Here, the expected payoff vi(π|π̄) =

∑
s∈S ui(s)πs1 π̄s2 may

differ for the two populations. The extension of the selection model to two
populations reads:

dπ1,j

dt
= π1,j [v1(ej |π2)− v1(π1|π2)]

dπ2,j

dt
= π2,j [v2(ej |π1)− v2(π2|π1)]

(2.5)

For the two-population selection-mutation model, an extension of Equa-
tion 2.4, we have:

dπ1,j

dt
= απ1,j

[
τ−1 [v1(ej |π2)− v1(π1|π2)] + π1 log π1

T − log π1,j

]
dπ2,j

dt
= απ2,j

[
τ−1 [v2(ej |π1)− v2(π2|π1)] + π2 log π2

T − log π2,j

] (2.6)

The two-population dynamics are used in Section 6.3.1 to model strategic
behavior in 2 x 2 games.
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2.2.2 Evolutionary stable strategies

One of the core concepts from evolutionary game theory is the notion of
an evolutionary stable strategy. It is a refinement of the Nash equilibrium,
i.e. every evolutionary stable strategy is a Nash equilibrium, but not vice
versa. Nash equilibria appear as rest points of the selection dynamics defined
by Equation (2.1), i.e. dπj

dt = 0. However, stochastic deviations through
mutation may lead evolution out of such a rest point. A strategy is called
evolutionary stable, if natural selection counters small deviations from this
strategy and pushes the population back towards the stable strategy.

Assume, the whole population plays according to some mixed strategy
π. At some point in time, a mutant µ appears and is played by a small
number of individuals. This mutant strategy may grow and establish in
the population, or it may go extinct due to evolutionary pressure of natural
selection. A strategy is evolutionary stable, if it cannot be invaded by any
mutant strategy µ. Formally, the following two conditions must hold:

v(π|π) ≥ v(µ|π)
and if v(π|π) = v(µ|π) then v(π|µ) > v(µ|µ)

(2.7)

Thus, a mutant must not gain more profit against π than π against itself.
Furthermore, whenever µ obtains an equally high profit as π, the evolu-
tionary stable strategy must do better against the mutant than the mutant
against itself.

2.2.3 Example: Rock-Paper-Scissors

The matrix given in Figure 2.5 describes both players’ payoff matrix for a
symmetric two-player normal form game, where they may choose between
the three strategies Rock, Paper and Scissors. The payoff matrix for the
second player equals the transposed of the first player’s payoffs in symmetric
games.

The game Rock-Paper-Scissors yields one mixed Nash equilibrium with
the profile π∗ = (1

3 ,
1
3 ,

1
3). This equilibrium point is not evolutionary stable.

To prove this, we regard the two conditions for evolutionary stable strategies
for a matrix game A. Let π∗ denote the mixed Nash equilibrium and let µ

Rock Paper Scissors
Rock 0 −1 1
Paper 1 0 −1

Scissors −1 1 0

Figure 2.5: Payoffs matrix A = BT for both players in the symmetric
two-player normal form game ’Rock-Paper-Scissors’.



16 CHAPTER 2. GAME THEORETICAL BACKGROUND

denote an invading mutant. The strategy π∗ is evolutionary stable, if the
following two conditions hold:

π∗Aπ∗ ≥ π∗Aµ
and if π∗Aπ∗ = π∗Aµ then π∗Aµ > µAµ

For the example of Rock-Paper-Scissors, the first condition always holds as
π∗Aπ∗ = π∗Aµ for all µ. Consider the example mutant µ′ = (1

4 ,
1
4 ,

1
2), for

which the second condition does not hold, as π∗Aµ′ = 0 = µ′Aµ′. Therefore,
the strategy π∗ can be invaded by mutants and is not evolutionary stable.

The replicator dynamics for this symmetric three-strategy game can be
visualized in a simplex. Each corner cj = (xj , yj) of the simplex represents
one pure strategy j. The position of a policy πt at time t in the simplex is
the weighted average of the corner points.

position(πt) =
3∑
j=1

πtjcj

The learning dynamics that can be observed in the next section show cyclic
behavior. This explains why the Nash equilibrium is not evolutionary stable.
Invading mutants do not go extinct, but rather start a perpetual cycling
around the equilibrium point.

Directional field plots

Directional field plots are created by computing the replicator dynamics at
a set of grid points and plotting arrows from each of these grid points in the
direction of dπ

dt . This captures the local dynamics of the learning behavior
and supplies an overview over basins of attraction. The directional field
plot for the game Rock-Paper-Scissors with replicator dynamics according
to Equation 2.2 is displayed in Figure 2.6. It shows the cyclic evolution in
this selection model.

Rock

Paper

Scissors

Figure 2.6: Directional field plot for the game Rock-Paper-Scissors.
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Force field plots

Similar to the directional field plot, the force field plot uses arrows in the
direction of dπ

dt . Additionally, the length of the arrows is proportional to∣∣∣∣dπ
dt

∣∣∣∣. The force field plot for the Rock-Paper-Scissors with replicator dy-
namics according to Equation 2.2 is given in Figure 2.7. In contrast to the
directional field plot, it shows that the learning speed changes less rapidly
around the central rest point and the corner points, which are also always
rest points in the selection model.

Rock

Paper

Scissors

Figure 2.7: Force field plot for the game Rock-Paper-Scissors.

The replicator equations define a dynamical system which may feature a
number of repellers and attractors. The latter are of particular importance
to the analysis of asymptotic behavior. The strategy space can be parti-
tioned into a set of basins of attraction. Each basin specifies a set of initial
strategy profiles, for which the learning process eventually converges to the
same attractor [13]. Assuming that an evolutionary process may start uni-
formly at any point in the strategy space, the size of the basin of attraction
may be used to estimate the practical importance of an attractor. This can
be achieved by inspection of the directional field plots or by analyzing the
convergences of trajectories with initial policies that are uniformly sampled
from the mixed strategy space.

2.3 Heuristic payoff tables

In the context of auctions, each pure strategy corresponds to a trading
strategy. Furthermore, the utility function is proportional to the profit that
a trader makes with each strategy, given the pure strategy profile.

Auctions with n trading agents and k available trading strategies pro-
vide a complex symmetric game. The full representation of this game re-
quires to define the payoff for each of the kn possible pure strategy profiles.
This makes it intractable for practical purposes. Fortunately, the symmetric
property of auctions can be exploited to compress the payoff representation.
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A heuristic payoff table is proposed in [39] and adopted by several authors
to capture the average profit of each type of trading strategy for all pure
strategy profiles in a finite population [15, 24]. For the domain of auctions,
the required profits can only be computed in simulation, where the private
valuation of each trader is known.

The heuristic payoff table is defined for a finite population of identical
agents who play a symmetric game. Because the agents are identical, it is
not important who plays which strategy, but merely how many agents are
playing each of the different strategies. So, given a pure strategy profile
s = (s1, . . . , sn), we can derive that there are N1 agents playing strategy 1,
N2 agents playing strategy 2, etc.. This will be denoted by a discrete profile
N = (N1, . . . , Nk), telling exactly how many agents play each strategy. The
average profit for playing a strategy can then be denoted by the payoff vec-
tor U(N) = (U1(N), . . . , Uk(N)), indicating that strategy j ∈ {1, 2, . . . , k}
would yield an average payoff of Uj(N) for the discrete profile N . The dis-
tribution of n agents on k pure strategies is a combination with repetition,
hence the number of discrete profiles of a heuristic payoff table is given by:

(
n+ k − 1

n

)

Let D denote a matrix that yields all discrete profiles as rows. The payoffs of
these discrete profiles can be measured in many practical domains, including
poker and auctions. However, measurements do not allow to capture the
payoff to strategies that are not present in marginal strategy profiles, i.e.
whenever Nj = 0 then Uj(N) is unknown. Let U denote a matrix, where
each row r corresponds to the payoff vector of the r’th row in D. The full
heuristic payoff table is the compound H = (D,U) of the profiles in D, and
the payoff matrix U . The next section illustrates this by an example.

2.3.1 Example: Rock-Paper-Scissors

Table 2.1 shows a heuristic payoff table for the example game Rock-Paper-
Scissors. Unknown payoffs are indicated with a dash. Let us assume the
heuristic payoff table for Rock-Paper-Scissors was obtained from observa-
tions: There are two individuals who play a policy that is proportional to
N , and for whom the payoff function is defined in Figure 2.5. Trivially, when
all agents choose Rock, an average payoff of 0.0 is observed for Rock, while
the other payoffs remain unknown. When the two players mix (0.5, 0.5, 0)
between Rock, Paper and Scissors, Rock and Paper will draw half of the
time, and Rock will loose against Paper sometimes. The actual calculations
to obtain this example are given in Section 4.1.
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Table 2.1: The heuristic payoff table of Rock-Paper-Scissors with 2 agents.
The first three columns give the discrete profiles N over the strategies and
the last three columns give the corresponding payoff vectors U(N).

NRock NPaper NScissors URock UPaper UScissors

2 0 0 0.0 - -
1 1 0 −0.5 0.5 -
1 0 1 0.5 - −0.5
0 2 0 - 0.0 -
0 1 1 - −0.5 0.5
0 0 2 - - 0.0

2.3.2 Replicator dynamics from heuristic payoff tables

A heuristic payoff table captures the payoff for a finite population of traders.
Consequently, the payoff is only defined for the mixed strategy profiles that
are feasible in this finite population. This section defines the expected payoff
for any mixed strategy, which is required to compute the replicator dynamics
directly from the heuristic payoff table.

Assuming each agent i independently chooses his pure strategy si ∈
{1, . . . , k} according to the same policy π̄ = (π̄1, . . . , π̄k), the probability of
each strategy profile s = (s1, . . . , sn) equals

∏n
i π̄si . The probability of a

discrete profile can be computed as the product of the number of strategy
profiles that are subsumed by this discrete profile and their probability. It
is a multinomial, for which Pr(N |π̄) is the probability of the discrete profile
N given the mixed strategy π̄.

Pr(N |π̄) =
(

n

N1, . . . , Nk

) k∏
j=1

π̄Nj

The expected payoff for the mixed strategy π̄ can then be computed as the
weighted average over the payoffs received in all profiles. However, not all
payoffs are known. When the payoff Uj(N) to strategy j in the discrete
profile N is not known, we define Uj(N) = 0. This implies, that the weight
on a marginal strategy profile will not contribute to the weighted payoff
average for the non-occurring strategy j. A correction term accounts for
the missing payoffs by scaling the weighted average up by 1

1−Pr(unknown|π̄) ,
where Pr(unknown|π̄) denotes the accumulated weight that falls on un-
known payoffs.

Uaverage,j(π̄) =
∑

N Pr(N |π̄) · Uj(N)
1− Pr(unknown|j)

The combined weighted payoff function gives the payoff vector Uaverage(π̄) =
(Uaverage,1(π̄), . . . , Uaverage,k(π̄)) against the policy π̄. This weighted payoff
function is the equivalent of Aπ̄ given a matrix game A. Now, the expected
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profit for policy π against policy π̄ can be computed from the heuristic payoff
table:

v(π|π̄) = πUaverage(π̄)T

Using this definition of expected payoff, the replicator dynamics can be
computed from the heuristic payoff table.



Chapter 3

Reinforcement learning

This chapter provides a concise introduction to single-agent and multi-agent
reinforcement learning. The fundamentals and general principles are ex-
plained, as far as they contribute to the understanding of the analysis that
is applied in this thesis. The learning schemes of Cross learning and Q-
learning are introduced and challenges of multi-agent learning are sketched.
In contrast to evolutionary game theory, which describes the learning pro-
cess on a population level, the algorithms describe learning on an individual
level.

Reinforcement learning has originally been studied in the context of
single-agent environments. An agent receives a numerical reward signal,
which it seeks to maximize in the long run. The environment provides this
signal as a feedback on the sequence of actions that has been executed by the
agent. Figure 3.1 depicts the environment-agent interaction schematically.
Learners relate the reward signal to previously executed actions to learn a
policy that maximizes the expected future reward [32].

Environment

Agent
actionreward

Figure 3.1: Agent-environment interaction, a feedback is given as a re-
sponse to each action and may depend on the complete sequence of executed
actions.

21
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3.1 Models of reinforcement learning

Reinforcement learning models can be divided into policy and value itera-
tors [36]. This section explains the learning models that are described by
the evolutionary analysis. It first presents the most simple policy iterator
Cross learning and then elaborates on Q-learning, an example of value based
iteration.

3.1.1 Cross learning

Cross learning is a mathematical model for learning that originates from the
field of psychology and has been first considered by Cross [5]. It assumes
several agents who repeatedly play the same normal form game. At each
iteration, the behavior of each agent can be described by his policy πi =
(πi1, . . . , πik), which indicates how likely any available action is to be played.
One pure strategy is drawn according to the probabilities and the policy is
updated based on the experienced reward.

In order to apply Cross learning, the normal form game needs to be
normalized such that the payoffs are positive. Let us assume u(s) ∈ [0, 1]k.
Upon execution of the strategy profile s at time t, the policy πi is updated
according to the following scheme:

πt+1
i,si
← ui(s)− (1− ui(s))πti,si

and for all j 6= si : πt+1
i,j ← (1− ui(s))πti,j

At each iteration, the probability of the played strategy si is pushed towards
its utility. The term 1−ui(s) maintains the probability vector by scaling the
previous policy down, such that ui(s) can be added to the played strategy.

There is an analogy between learning and biological evolution [3]. The
learning agent updates, or evolves, his policy over the population of pure
strategies. At each time step, a pure strategy is evaluated and subjected
to evolutionary pressure, i.e. the learning process increases its probability
if it performs well and decreases the probability if it performs poorly. The
average learning behavior of Cross learning in the continuous time limit con-
verges to the replicator dynamics with selection, defined by Equation 2.1 [2].
Cross learning belongs to the family of learning automata, for which a com-
plete discussion is given in [18]

3.1.2 Q-learning

Q-learning was initially introduced for single-agent environments [40]. Each
learning step refines a utility-estimation function for state-action pairs and
generates a new policy from the estimated values to draw the next action to
execute. Q-learning has been proven to converge to the optimal policy under
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appropriate parameter settings and additional assumptions like a suitable
environment [40].

The idea originates from the Bellman optimality equation which is given
in Equation 3.1. Let R(p) be the reward for being in state p, R(p) = 0 for all
states p except the goal state p∗ for which R(p∗) > 0. P (p′|p, a) denotes the
probability to be in state p′ given that action a is executed in state p and
γ ∈ [0, 1] is the discount factor for future rewards. V ∗ estimates the value
of a state by taking into account the immediate reward and the discounted,
expected future rewards.

V ∗(p) = R(p) + max
a
γ ·
∑
p′

P (p′|p, a)V ∗(p′) (3.1)

The optimal action a is given by

a = arg max
a′

γ ·
∑
p′

P (p′|p, a′)V ∗(p′)

Q-learning leverages the state value estimation to relate rewards to state-
action pairs. A full discussion of Q-learning with states is given in [40,
32]. This thesis only considers stateless multi-agent games and consequently
stateless Q-learning is described in the following section.

Multi-agent Q-learning without states

Multi-agent learning can be approached in different ways, depending on
the information that each agent perceives. The approaches vary from joint
action space learners to independent learners. When the joint action is
known to an agent, he can learn in the joint strategy space. However, we
assume that the opponents’ strategies are unknown to each trading agent.
Therefore, this thesis takes the perspective of independent learners, where
each agent maintains an independent learning process that only depends on
his own action and the perceived payoff.

The games under consideration do not feature states hence the Q-function
plainly estimates utilities of the available actions. Furthermore, each agent
has an independent Q-value estimation function. Equation 3.2 shows the
Q-update rule for stateless Q-learning using the following terms:

• Qti(si) Q-value estimation function of player i at iteration t for action
si

• sti Action of player i played in iteration t

• rti Reward for player i obtained in iteration t, in the context of games
defined by the utility function

• α ∈ [0, 1] Learning rate
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The new estimation is the weighted sum of the old estimation and the ob-
served reward.

Qti(si)← (1− α) ·Qt−1
i (si) + α · rti (3.2)

In each iteration, an action needs to be chosen based on the current knowl-
edge. This step is essential to balance exploitation versus exploration. A
dynamic trade-off between exploration and exploitation can be implemented
using the idea of temperature from physics. The Boltzmann distribution al-
lows a probability generation from arbitrary parameters. This approach is
also often used for simulated annealing where an initially high temperature
promotes exploration and decreasing temperature over time leads to strong
exploitation in the final phase. The policy π is generated by:

πj =
eQi(j)·τ−1∑

k∈S
eQi(k)·τ−1

By tuning the temperature parameter τ , the balance between exploration
and exploitation can be adjusted while exploration is still directed toward
promising actions.

The average learning behavior of Q-learning can be described by Equa-
tion (2.4) [35], which consequently features the Q-learning’s parameters α
and τ .

3.2 The challenge of multi-agent learning

Multi-agent learning is inherently more challenging than single-agent learn-
ing. Consider the example of two agents that learn to play soccer. Initially,
both are amateurs and they learn to pass the ball in a very safe manner.
They can handle more and more difficult situations the more they advance.
Now, the safe pass is not actually a good pass anymore, because the agents
could do better with a more aggressive forward pass that an amateur would
not be able to get. The best action has changed by the learning process
and is not only dependent on the state of the environment, but also on the
complete history of actions that has been played before. In other words, the
Markov property does not hold. This implies that many proofs from clas-
sical single-agent learning theory do not apply anymore and convergence to
optimal strategies is not guaranteed. Fortunately, the link to evolutionary
game theory provides a new powerful theoretical framework to analyze the
learning behavior in multi-agent games.



Chapter 4

Normal form approximation

This chapter elaborates on the approximation of heuristic payoff tables by
normal form games and defines the transitions between the two representa-
tions. Heuristic payoff tables are a compressed representation for symmetric
games of arbitrarily many agents, e.g. they can represent a simple symmet-
ric two-agent normal form game or auctions with many traders. Section 4.1
shows that creating a heuristic payoff table for a symmetric two-agent game
is straight forward. This direct relation suggests that it is also possible to
create a normal form game representation for any heuristic payoff table,
which is a potentially lossy compression. Despite the possible information
loss, the normal form approximation is attractive, as normal form games are
more intuitive and therefore easier to analyze. They are well studied and
allow to apply means from game theory with less computational effort such
that more complex models can be used to derive strategic behavior.

4.1 From normal form games to heuristic payoff
tables

The heuristic payoff table lists all possible discrete profiles and their as-
sociated payoff vectors. The combinations of k strategies and n agents
provide the discrete profiles. Corresponding payoff vectors for each pro-
file N against a mixed strategy π = 1

nN can be computed from the matrix
game A as AπT . Considering the example Rock-Paper-Scissors given in
Section 2.3.1, the payoff to the profile N = (1, 1, 0) can be computed as
U(N) = A1

2(1, 1, 0)T = (−0.5, 0.5, 0)T , where A is the matrix given in Fig-
ure 2.5. The heuristic payoff table yields the payoff vector (−0.5, 0.5,−)
for consistency reasons with data from observations, where the payoff for
non-occuring strategies cannot be determined.

Let D be the matrix where each row corresponds to a discrete profile
N of n agents. Furthermore, let the matrix P = 1

n · D yield policies that
are proportional to the discrete profiles. The matrix U , that yields the
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corresponding payoff vectors U(N) as rows, can then be computed as the
product of P and A.

U = P ·AT (4.1)

The heuristic payoff table H = (D,U) is the composition of the discrete
profiles and the corresponding payoffs.

4.2 From heuristic payoff tables to normal form
games

This section reverses the step of the previous section and shows the tran-
sition from a heuristic payoff table to a normal form game approximation.
However, equation (4.1) cannot simply be solved for A as the values in the
heuristic payoff table may be noise-prone due to stochasticity in the simula-
tion experiments and may also be more complex than the normal form can
capture. This leads to an over-constrained system of equations which can
only be approximated, e.g. by minimizing the mean squared error or the
maximal absolute deviation.

Minimizing mean squared error

A normal form game A that approximates the heuristic payoff table H =
(D,U) can be determined incrementally for each row Ai by finding a least
mean squared error fit between the j’th column of U, denoted as Uj , and
the reconstructed payoff vector Ũj = P · ATj from the normal form game,
where P = 1

n ·D as above, by solving the minimization problem:

min
Aj

∣∣∣∣∣∣Uj − Ũj∣∣∣∣∣∣
2

A standard linear least square fitting algorithm can be used to solve this
system for each row to compose the normal form game matrix.

Minimizing maximum absolute deviation

Linear programming optimizes a linear goal function subject to a system of
linear inequalities. Using the same definitions of the profile matrix D, the
probability matrix P , the game A and the payoff matrix U as above, the
following program can be formulated.

minimize ε

variables ε, Ajh, for j, h ∈ {1, . . . , k}
subject to P ·AT ≤ U + ε

P ·AT ≥ U − ε



4.2. FROM HEURISTIC PAYOFF TABLES TO NORMAL FORM GAMES27

This program needs to be transformed to standard notation in order to
apply algorithms from linear programming. For sake of convenience, each
row Aj is determined separately. Let c = (1, 0, . . . , 0) and x = (ε, Aj) such
that the goal function c · xT minimizes epsilon. Furthermore, let M = −1

...
−1

P
−P

 and b =
(

Uj
−Uj

)
where Uj is the j’th column of the

payoff matrix. Then, this linear program can be solved in standard notation:

min
x

c · xT subject to M · xT ≤ b, x ≥ 0

In total, k linear programs need to be solved to compute the complete normal
form matrix that approximates the heuristic payoff table with a minimal
maximum absolute deviation.





Part II

Application to the auction
domain

29





Chapter 5

Auctions

“Computer science is no more about computers than astronomy
is about telescopes.”

Edsger Dijkstra

This chapter specifies the auction type that is used in the experiments pre-
sented in this thesis, gives an intuition for the available trading strategies
and explains the application of evolutionary game theory in auctions.

5.1 The clearing house auction

The traders that participate in an auction agree to subject to a set of market
rules in order to exchange goods for money. This thesis considers a com-
modity market, i.e. a single type of an abstract good is traded. Each trader
is assumed to have a private valuation of the good which is only known to
himself. Buyers and sellers place offers to indicate their intention to trade
at a certain price. The here considered clearing house auction proceeds in
rounds and polls offers from each trader each round. When all offers are
collected, an equilibrium price is established based on the available offers
such that demand meets supply at this price. It is set to the average of the
two offers that define the range of possible equilibrium prices, i.e. the lowest
bid and the highest ask that can be matched in the equilibrium. Each buyer
with an offer above that price is matched with a seller having an offer below
that price. The profit of a transaction can be computed as the difference
between the transaction price and the private value, assuming that buyers
will not buy above their private value and sellers will not sell below their
private value. For a more complete discussion and the relation of a clearing
house auction to other auction types, we refer to [21, 22].
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5.2 Trading strategies

A multitude of trading strategies has been devised to derive a good offer,
possibly exploiting the knowledge about offers and transactions that were
observed in previous rounds. The most trivial one is Truth Telling (TT)
which just reveals the private value by placing offers exactly at that value.
Despite its simplicity, it may be optimal in some situations [28]. The ex-
periment of this thesis considers three more sophisticated trading strategies.
Roth and Erev devised a reinforcement learning model of human trading
behavior in [7] which is modified to perform in a clearing house auction as
Modified Roth-Erev (MRE) [20]. MRE is evaluated in competition to Gjer-
stad and Dickhaut (GD) and Zero Intelligence Plus (ZIP). GD maximizes
the expected profit, which is computed for a set of relevant prices as the
product of profit and probability of successful matching [11]. ZIP places
stochastic bids within a certain profit margin, which is lowered when a more
competitive offer was rejected and increased when a less competitive offer
was accepted [4].

Each of the trading strategy may have several parameters. The profit
margin of ZIP is updated by a learner that can be tuned by its learning
rate and momentum parameter. MRE learns a policy over a set of k dis-
crete prices, where the learning behavior can be tuned by a recency and an
exploration parameter. GD evaluates a price range and requires to specify
the price interval to consider. This interval is commonly set to zero up to a
maximum of relevant prices.

5.3 Evolutionary game theory in auctions

Given a set of available trading strategies, it is of high interest to find out
which strategy is best in the sense that it yields the highest expected payoff.
However, this question cannot be answered in general, as the performance
of a trading strategy is highly dependent on the competition it faces [27].
Let us assume an auction, where traders only choose between the trading
strategies described above. This means, the trading strategies that define the
decisions within the auction and that may be adaptive themselves are now
considered atomic strategies. Each iteration corresponds to one auction,
where one of these strategies is played by each agent. The profit of each
trader is dependent on the overall mix of strategies and traders may choose to
change their strategy from auction to auction, e.g. applying a reinforcement
learning algorithm to improve their expected payoff. This adaptation can be
modeled by the replicator dynamics from evolutionary game theory which
are formally connected to reinforcement learning [34] and which have been
introduced in Chapter 2.



Chapter 6

Experiments

This chapter presents the experimental setup and results for the empiri-
cal investigation of the research questions listed in 1.2. In particular, the
proposed methodology is tested on an example from the auction domain.

The general setup is summarized in Figure 6.1 and can be described
as follows: Section 6.1 describes the simulation setup and calculation of a
heuristic payoff table for a clearing house auction with the three trading
strategies ZIP, GD and MRE. The resulting table is approximated in Sec-
tion 6.2 using the methods described above and subsequently compared to
its approximations. The comparison uses difference plots and replicator dy-
namics, visualized by directional or force field plots. Section 6.3 applies a
learning model of selection and mutation to 2x2 games and to a normal form
game auction approximation. The learning is illustrated by directional and
force field plots for the replicator dynamics and by example trajectories.

Setup
Game 

theory

heuristic 

payoff table

normal form 

game

force field 

plot

directional 

field plot
trajectories

replicator 

dynamics

differences

Figure 6.1: A scheme of the general experimental setup.
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6.1 Calculating the heuristic payoff table

The heuristic payoff table given in Table 6.1 is obtained by simulating auc-
tions with the Java Auction Simulator API (JASA) [23]. This empirical
platform contains the trading strategies ZIP, MRE and GD which are de-
scribed in Chapter 5, according to [4, 11, 20]. They are setup with the
following parameters: ZIP uses a learning rate of 0.3, a momentum of 0.05
and a JASA specific scaling of 0.2. MRE chooses between 40 discrete prices
using a recency parameter of 0.1, an exploration of 0.2 and scaling of 9. GD
evaluates prices in the interval [0, 360].

The heuristic payoff table is obtained from an average of 2000 iterations
of a clearing house auction, populated by 6 traders. On the start of each

Table 6.1: The heuristic payoff table of a clearing house auction with 6
agents and the three strategies ZIP, MRE and GD. The first three columns
give the discrete profiles N over the trading strategies and the last three
columns give the corresponding payoff vectors U(N).

NZIP NMRE NGD UZIP UMRE UGD

6 0 0 99 - -
5 1 0 97 100 -
5 0 1 89 - 69
4 2 0 96 94 -
4 1 1 90 88 65
4 0 2 85 - 69
3 3 0 97 92 -
3 2 1 87 90 64
3 1 2 85 80 73
3 0 3 76 - 73
2 4 0 97 96 -
2 3 1 91 91 66
2 2 2 84 83 67
2 1 3 78 70 76
2 0 4 62 - 80
1 5 0 97 97 -
1 4 1 93 89 62
1 3 2 86 84 69
1 2 3 73 71 75
1 1 4 73 57 77
1 0 5 56 - 80
0 6 0 - 94 -
0 5 1 - 91 62
0 4 2 - 84 67
0 3 3 - 75 71
0 2 4 - 65 76
0 1 5 - 43 79
0 0 6 - - 79
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auction, all traders are initialized without knowledge of previous auctions
and with a private value drawn from the same distribution as in [39], i.e.
an integer lower bound b is drawn uniformly from [61, 160] and the upper
bound from [b + 60, b + 209] for each buyer. The sellers’ private values are
initialized similarly. These private values then remain fixed over the course
of the auction, which runs 300 rounds on each of 5 trading days, where each
trader is entitled to trade one item per day.

The further analysis of trading strategies in this auction is based on the
heuristic payoff table. Besides applying evolutionary game theory directly
to it, the next section also tests the newly proposed methodology of approx-
imating the heuristic payoff table by normal form games and applying the
analysis subsequently.

6.2 Normal form approximation

In order to test the proposed methodology, the heuristic payoff table is
approximated as described in Section 4.2. This leads to the normal form
game representations given in Figure 6.2. The two methods generate sim-
ilar but not identical games. In both cases, ZIP against MRE yields the
heighest payoff while MRE against GD yields the lowest one. Consider-
ing the full ranking of payoffs, only the two joint strategies ZIP-ZIP and
MRE-ZIP are switched. Both games feature the same pure and symmetric
Nash equilibrium (0, 0, 1), but the least mean squared error approximation
features another pure equilibrium at (1, 0, 0) while a mixed symmetric equi-
librium at (0.73, 0.27, 0) is present in the least maximum absolute deviation
game. The latter is used for further analysis. It has a matrix game value
of 73.1, which can be guaranteed by the optimal mixed trading strategy
π+ = (0.3, 0, 0.7). This means that a trader who plays ZIP with probability
0.3 and GD with probability 0.7 will get an expected payoff of at least 73.1
against any combination of ZIP, MRE and GD.

Least mean squared error Least maximum absolute
deviation

ZIP MRE GD
ZIP 97.4 98.8 52.3
MRE 96.8 98.6 42.6
GD 64.8 59.1 83.4

ZIP MRE GD
ZIP 93.8 102.7 52.9
MRE 94.9 100.0 38.3
GD 66.2 60.5 81.8

Figure 6.2: The symmetric two-player normal form game approximations
of the heuristic payoff table for a clearing house auction with the three
strategies ZIP, MRE and GD.
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Comparison

The normal form game can also be converted back into a heuristic payoff
table as described in Section 4.1. This allows a direct comparison of the
payoffs in the different models and can be used to evaluate the information
loss in the normal form. To understand the difference plots, which facilitate
the comparison, it is useful to see which points of the simplex are actu-
ally defined by the heuristic payoff table. Figure 6.3 indicates the different
positions of profiles from the heuristic payoff table with asterisks.

Two kinds of differences between the heuristic payoff table and its ap-
proximations are visualized in Figure 6.4. Both use a heatmap in form of a
simplex, where the brightness is proportional to the differences. The first dif-

ZIP

MRE

GD

Figure 6.3: Profiles that are defined in a heuristic payoff table for 6 agents
are marked with a star.

Least mean
squared error

Least maximum
absolute deviation

Raw payoff
differences

Weighted payoff
differences

Figure 6.4: Payoff differences between the heuristic payoff table and its
normal form approximations. The brightness is proportional to the length
of the difference vectors at the defined profile positions and the simplex is
filled by interpolation.
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ference compares the raw payoffs, i.e. brightness(N) ∼
∣∣∣∣∣∣U(N)− Ũ(N)

∣∣∣∣∣∣
2
,

where U(N) denotes the payoff vector in the heuristic payoff table and Ũ(N)
denotes the one in its approximation. However, the raw payoffs are only
given for exactly six agents who use a specific mix of trading strategies.
When a large population is assumed that makes independent choices accord-
ing to the probability vectors defined by the profiles, the payoff vector for
such a population needs to be computed by weighting the payoffs as in Sec-
tion 2.3.2. The second difference is hence computed from the weighted pay-
offs of both models, i.e. brightness(N) ∼

∣∣∣∣∣∣Uaverage(N)− Ũaverage(N)
∣∣∣∣∣∣

2
.

The maximum absolute deviation in the raw payoff differences amounts
to 15.82% of the interval length of the payoffs in the heuristic payoff table for
the least mean squared error and 9.95% in the least maximum absolute de-
viation approximation. The root mean squared error however is much lower
at 4.92% and 5.51% respectively. The least mean squared error naturally
generates a better average fit while the least maximum absolute deviation
yields a better worst fit.

The weighted payoff differences are significantly lower than the raw pay-
off differences and relatively high only in marginal profiles. This may be as-
cribed to the fact that the marginal payoffs are not altered by the weighting.
An arbitrary resolution can be applied for the weighted payoff comparison
and the bright areas are expected to diminish further when the differences
are computed with higher resolution in future analysis. The maximum ab-
solute deviation is reduced to 9.72% for the least mean squared error ap-
proximation but remains the same in the least maximum absolute deviation
fitting. The root mean squared error decreases to 2.84% and 3.40% respec-
tively.

A small error in the weighted payoffs is a good condition for the replica-
tor dynamics, which are computed from the weighted payoffs. The replicator
dynamics describe the evolutionary change of a population which maps to
a learning process, that is the actual subject of interest. In particular, the
learning model allows to derive strategic behavior in auctions and there-
fore tackles the research questions. An approximation should not alter this
analysis qualitatively, hence another evaluation of the normal form game
approximations is based on the comparison of the replicator dynamics in
the different models.

The selection dynamics of Equation (2.1) are derived from the heuristic
payoff table and the normal form game representations and compared in
Figure 6.5. There is a clear qualitative correspondence of the dynamics that
arise from the three models. Differences are very small and hard to identify
from the force field plots. Therefore, directional field plots are given as well,
which allows to find the attractors and basins of attraction by inspection.

Analyzing the convergence of 10000 trajectories with uniformly sampled
starting points, the position of the attractors and their corresponding basin
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Heuristic payoff
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squared error
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ZIP

MRE
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MRE

GD ZIP

MRE

GD

ZIP

MRE

GD ZIP

MRE

GD ZIP

MRE

GD

Figure 6.5: Comparison of the original replicator dynamics from the heuris-
tic payoff table (left) to those from the normal form game approximations
by least mean squared error (center) and minimized maximum absolute de-
viation (right) in the clearing house auction with 6 agents.

size can be estimated. A mixed attractor can be found at (0.82, 0.18, 0.0)
for the heuristic payoff table, at (1, 0, 0) in least mean squared error fitting
and at (0.73, 0.27, 0.0) in minimized maximum absolute deviation. Despite
these differences in the location of the attractor, the strategy space is parti-
tioned into very similar basins of attraction. The pure attractor at (0, 0, 1)
is present in all dynamics and consumes 26.0% of the strategy space in the
heuristic payoff table in comparison to 26.4% and 27.3% in the approxima-
tions. Learning processes that start in the remaining part of the strategy
space converge to the mixed attractor.

In the context of evolutionary game theory, evolutionary stable strate-
gies provide a concept to find stable solutions in symmetric normal form
games. The attractors are evolutionary stable in the normal form game
approximations and predict the attractors that are observed in the auction
game dynamics. The differences in the basins of attraction are very small
in both approximations, but the least maximum absolute deviation approx-
imation is closer in the position of the mixed attractor. Therefore the latter
is used for the further analysis. The concise representation allows to apply
means from classical game theory and facilitates computing the game dy-
namics with less computational effort. Therefore, a more complex model of
learning can be applied to the auction game, leveraging the newly obtained
normal form representations in the next section.
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6.3 Selection-mutation model

One of the criticisms on current research in auctions is the lacking account
for exploration as it occurs in human learning. This section tackles this
issue by applying the evolutionary selection-mutation model given in Equa-
tion 2.4. This model has a free temperature parameter to balance selection
and mutation, which map to exploitation and exploration in the Q-learning
algorithm [35].

First, this model is applied to 2 x 2 games to facilitate understanding of
the model. Then, it is used to analyze the least maximum absolute deviation
approximation of the auction. The selection-mutation equations converge
to the selection model when temperature τ approaches zero. Therefore,
the results presented below use τ = 0.01 for a learning model of almost
pure selection and increasing temperatures for different mutation rates. The
selection-mutation model is not defined for marginal profiles. Hence, only
non-marginal profiles are considered, where each strategy is played with a
probability of at least 10−6.

6.3.1 2 x 2 games

Three 2 x 2 games are investigated and represent the three subclasses that
2 x 2 games can be divided into. Figure 6.6 shows the two-population
dynamics according to Equation (2.6) under different temperatures in the
Prisoners’ Dilemma, Battle of Sexes and Matching Pennies. The plots are
insensitive to the learning rate α. Though α scales dπi

dt , the length of the

arrows is normalized and only shows relative differences in
∣∣∣∣∣∣dπi
dt

∣∣∣∣∣∣
2
.
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Figure 6.6: Force field plots of the replicator dynamics in a representative
selection of normal form game examples.
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The attractor in the Prisoners’ Dilemma converges to the pure strategy
confess when the temperature decreases and the learner ceases exploration.
Similarly, the two attractors of the Battle of Sexes appear mixed under explo-
ration and converge to the pure strategies. The mixed attractor of Matching
Pennies remains at the same mixed strategy but the convergence behavior
changes gradually. Under exploration the learners converge quickly while
they tend to cyclic behavior the more they exploit. In the selection-only
limit, the rest point is not evolutionary stable anymore and the dynamics
are cyclic.

The model of investigation describes the average learning behavior of Q-
learning, which may be applied with a decreasing temperature to overcome
local optima [32]. This can be illustrated by example learning trajectories.
A trajectory is started at some point π0 in the strategy space and evolves
according to the learning dynamics with πt+1 = πt+δ · dπt

dt . Figure 6.7 shows
30 policy trajectories. They are computed with tmax = 1000 iterations,
a step size of δ = 0.01 and learning rate α = 1, where the temperature
decreased from τmax = 3 to τmin = 0.25 according to Figure 6.8, which plots
the temperature τ over time t.

τ(t) = (τmax − τmin) · (1− t

tmax
)3 + τmin (6.1)

The force field plots in Figure 6.6 help to interpret these trajectories. When
the temperature decreases, the attractors in the Prisoners’ Dilemma and
Battle of Sexes move from mixed strategies to pure ones. It can be observed
that the trajectories follow the attractor like a moving target. The speed of
that target is determined by the temperature function, given in Equation 6.1,
while the speed of the trajectories is determined by the learning rate α and
the step size parameter δ. This is an interesting observation because it
means that the temperature decrease needs to be tuned with respect to α
and δ.

Prisoners’
Dilemma

Battle of Sexes Matching Pennies

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
2
2

π
1
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
2
2

π
1
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

π
2
2

π
1
1

Figure 6.7: Normal form game trajectories with decreasing temperature.
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Figure 6.8: Temperature function for the normal form game trajectories.

6.3.2 Auctions

The previous section has investigated 2 x 2 game dynamics under varying
temperatures. This section applies the same analysis to the least maximum
absolute deviation normal form game approximation of the auction game,
but it uses the single population dynamics defined in Equation 2.4. Fig-
ure 6.9 displays the directional field and force field plots under different
temperatures. A mixed attractor converges to the Pareto optimal evolu-
tionary stable strategy when the temperature approaches zero. The pure
attractor for GD only appears when exploration is very low. This suggests,
that the learning process of all initial policies may converge to the Pareto
optimal solution, given a sufficiently long time of exploration.

Figure 6.10 shows 200 learning trajectories of tmax = 1000 iterations with
uniformly sampled starting points, a step size of dt = 0.01 and a learning
rate α = 1. The temperature is decreased from τmax = 3 to τmin = 0.001,
according to Equation (6.1). As expected, all trajectories converge to the
Pareto optimal attractor (0.73, 0.27, 0).

Similar to the trajectories of 2 x 2 games, the trajectories of the auction
game follow a moving attractor. The results show that the whole strategy
space may converge to the Pareto optimal evolutionary stable strategy, given
a sufficiently long phase of exploration in this auction. This result was
correctly predicted by the replicator dynamics given in Figure 6.9. It differs
qualitatively from the selection-only model, showing less convergence to the
local optimum. Therefore, the conclusions about the asymptotic behavior of
agents depend on the assumed amount of exploration in the learning process
under investigation. It is realistic to assume that humans explore in their
learning process, therefore the selection-mutation model is essential for a
realistic description of strategic behavior in auctions.
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Figure 6.9: Replicator dynamics of the least maximum absolute deviation
approximation given in Figure 6.2.
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Figure 6.10: Learning trajectories in the least maximum absolute deviation
approximation using a selection model (left) and a mutation model (center),
where the temperature decreases according to the function that is displayed
on the right.





Chapter 7

Discussion and conclusions

This chapter first relates the methodology and experiments of this thesis
to previous work and then discusses limitations of the proposed approach.
Conclusions and directions for future research close this thesis.

7.1 Discussion

The heuristic payoff table is a simplification of a symmetric game. In fact,
the methodology that is introduced in this thesis extends this simplification
by the approximation to an even smaller model. The full payoff function for
the symmetric game would map each joint strategy to a payoff for each agent
and require kn entries. In contrast to this, the heuristic payoff table maps
discrete strategy profiles to payoffs for each strategy, using

(
n+k−1
n

)
rows and

k times as many payoff entries. The normal form game approximation maps
probability distributions over the strategies to payoffs for each strategy and
only requires k2 entries. The example used in the case study of this thesis
features 6 agents and 3 strategies. It would require 36 = 729 entries for
the full representation,

(
6+3−1

6

)
= 28 rows or 28 · 3 = 84 payoff entries

in the heuristic payoff table, and only 32 = 9 entries for the normal form
game approximation. The latter actually reduces the multi-player game to a
two-player game. The reduced size makes it easier to process the numerical
representation computationally, but also makes it more accessible to manual
inspection. This is of particular importance when the number of strategies is
increased. The matrix game lists how much each strategy gains against each
of the alternatives, i.e. all pairwise comparisons. Even for large numbers of
strategies, the normal form gives an intuition on their relative strength.

The methodology proposed in this thesis extends previous work, which
has captured the payoff in auctions in heuristic payoff tables and used evolu-
tionary game theory to perform a comparative analysis of trading strategies.
A bridge to classical game theory has been devised and is used to apply a
more sophisticated game theoretical analysis, i.e. computing optimal strate-
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gies and using a selection-mutation perspective from evolutionary game the-
ory. The case study of the proposed methodology investigates the perfor-
mance regarding a 6-trader clearing house auction. It has demonstrated
the feasibility of this approach and has allowed to apply a computationally
more complex analysis. This analysis shows significant differences to the
previously deployed selection-only model. It emphasizes that explorative
learning yields significantly different learning dynamics. As we consider hu-
mans explorative, it suggests that the selection-mutation perspective should
be applied to obtain a realistic model of human learning.

The proposed approach is general in the number of actions and can be
transfered to higher dimensions. However, the approximation of heuristic
payoff tables by normal form games imposes a linear model on the approx-
imated payoffs. To be precise, let the payoff matrix A denote the normal
form approximation. Changing from policy π to policy π′, where δ = π′− π
is the difference vector between the policies, the payoff vector will change by
exactly Aδ. In contrast to that, the heuristic payoff table may define more
complex payoff functions such that the difference between the payoff vectors
for π and π′ is almost arbitrary.

This implies, that the approximation may be an oversimplification for
complex dynamics, which may arise from intricate interactions of real multi-
agent systems. However, the multinomial weighting, that is applied to
heuristic payoff tables to compute the expected payoff, appears to smoothen
the payoff signal such that the qualitative differences are reduced. This
may be explained by the fact, that the weighting is a linear combination of
multinomial weights of the different profiles. This implies, that the payoff
differences between two policies π and π′ are also constrained, especially
if they are close together. Consider two example policies π = (0.9, 0.1, 0)
and π′ = (0.8, 0.2, 0) for the game Rock-Paper-Scissors. Computing the
expected payoff from the 2-agent heuristic payoff table given in Table 2.1
would use a high weight on profiles (2, 0, 0) and (1, 1, 0) for both policies.
Therefore, their payoff vectors will be similar. Similar reasoning applies for
more agents and more strategies, because the multinomial weighting adapts
accordingly. The exact theoretical relation between the linearity limitation
and the weighting scheme remains to be addressed in future work.

7.2 Conclusions

This thesis has modeled the strategic behavior of trading agents in a clearing
house auction. A heuristic payoff table has been obtained from simulation
and was approximated by the newly devised methodology. The approxi-
mation has been evaluated quantitatively and qualitatively. Furthermore, a
selection-mutation model has been applied to 2 x 2 games and an approxi-
mation of the heuristic payoff table.
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The contributions of this thesis are two-fold: A methodology to approxi-
mate heuristic payoff tables by normal form games has been introduced and
an empirical case study has been performed by applying an evolutionary
selection-mutation model to a game representation of an auction.

The case study has demonstrated the viability of the proposed methodol-
ogy. Rather than merely participating myopically, a rational agent can now
inspect the game strategically. This implies, that means and reasoning from
classical game theory can be applied, e.g. to analyze asymptotic properties
of the auction. Furthermore, the selection-mutation model has shown that
learners may converge to a different strategy mix than in the selection-only
model, when a sufficiently long phase of exploration is present. It is reason-
able to assume, that humans are not hyper-rational but rather adapt to the
circumstances using exploration. Therefore, the selection-mutation model
describes human learning more realistically.

The obtained normal form game approximation is more intuitive, com-
putationally less expensive to analyze and fills in a gap of missing payoffs in
the blind spots of the heuristic payoff table. In fact, the normal form game
can even be constructed from partial heuristic payoff tables, e.g. when a
number of profiles could not be observed. This may provide useful insights
into the dynamics of incomplete heuristic payoff tables that can be observed
in different domains, e.g. in poker. The theoretical contributions of this
thesis are not domain-specific. Hence, they may be transfered to any other
domain, where the strategic interaction between identical agents can be
modeled as a symmetric game.

7.3 Future work

The proposed methodology needs to be tested on other auctions and do-
mains, possibly evaluating it on higher numbers of strategies. An even
better approximation may be obtained by changing the goal function. Cur-
rently, each row of the normal form approximation is computed separately.
However, the relation between the rows is important, because the qualita-
tive differences in the approximation result from changes in the relative rank
of payoffs for one profile. Minimizing the length

∣∣∣∣∣∣U(N)− Ũ(N)
∣∣∣∣∣∣

2
of the

difference vectors between the heuristic payoff table and its approximation
may therefore yield better results than minimizing the maximum absolute
deviation or the mean squared error.

Future work will also aim to argue for the described approach on a more
theoretical level. Therefore, we will look for structure in the deviation from
the linear model, in particular where and why qualitative changes occur.
Finally, the approach that is described in this thesis may be established
as the basis of a more general framework to analyze strategic behavior in
complex multi-agent games.
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Glossary

Battle of Sexes
A 2x2 normal form game with two pure equilibria. 11, 12, 39, 41

Cross learning
A reinforcement learning algorithm. 3, 21, 22

directional field plot
A visualization for replicator dynamics. 15, 16, 37

evolutionary game theory
Mathematical study of strategic conflicts. 1, 3, 7, 12, 14, 31, 32, 35,
38, 45, G

evolutionary stable strategy
Solution concept of evolutionary game theory. 7, 12, 14, 38, 41

force field plot
A visualization for replicator dynamics. 15, 33, 37, 41

game
Numerical representation of a strategic conflict. 7, 46

game theory
Mathematical study of strategic conflicts. 3, 7–9, 12, 17, 18, 25, 38,
45, 46

heuristic payoff table
Table that lists discrete profiles and their payoff vectors. 3, 4, 7, 17–19,
25–27, 33–37, 45–47

learning automaton
A reinforcement learning algorithm. 22

Matching Pennies
A 2x2 normal form game with one mixed equilibrium. 12, 39, 41
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normal form game
Game of simultaneous action selection. 3, 7, 8, 15, 17, 18, 22, 25, 26,
33, 35, 37, 38, 41, 45, 46

Prisoners’ Dilemma
A 2x2 normal form game with one pure equilibrium. 11, 39, 41

Q-learning
A reinforcement learning algorithm. 3, 14, 21–24, 39, 41

reinforcement learning
A model for learning that is solely based on a reward feedback on
performed actions. 1, 3, 21, 32, G

replicator dynamics
Describes the evolutionary progress of a population. 1, 12, 15, 32, 33,
37

Rock-Paper-Scissors
A 3x3 normal form game with one mixed equilibrium. 15, 18, 25


	Contents
	List of figures
	List of tables
	Introduction
	Related work
	Problem definition and research questions
	Outline

	I Theory of games and learning
	Game theoretical background
	Classical game theory
	Normal form games
	Solution concepts
	Examples

	Evolutionary game theory
	Replicator dynamics
	Evolutionary stable strategies
	Example: Rock-Paper-Scissors

	Heuristic payoff tables
	Example: Rock-Paper-Scissors
	Replicator dynamics from heuristic payoff tables


	Reinforcement learning
	Models of reinforcement learning
	Cross learning
	Q-learning

	The challenge of multi-agent learning

	Normal form approximation
	From normal form games to heuristic payoff tables
	From heuristic payoff tables to normal form games


	II Application to the auction domain
	Auctions
	The clearing house auction
	Trading strategies
	Evolutionary game theory in auctions

	Experiments
	Calculating the heuristic payoff table
	Normal form approximation
	Selection-mutation model
	2 x 2 games
	Auctions


	Discussion and conclusions
	Discussion
	Conclusions
	Future work

	Bibliography
	Glossary


