
RESQ-learning in stochastic games

Daniel Hennes, Michael Kaisers and Karl Tuyls
Maastricht University

Department of Knowledge Engineering
P.O. Box 616, 6200 MD Maastricht, The Netherlands

{daniel.hennes, michael.kaisers, k.tuyls} @maastrichtuniversity.nl

ABSTRACT
This paper introduces a new multi-agent learning algorithm
for stochastic games based on replicator dynamics from evo-
lutionary game theory. We identify and transfer desired
convergence behavior of these dynamical systems by lever-
aging the link between evolutionary game theory and multi-
agent reinforcement learning. More precisely, the algorithm
(RESQ-learning) presented here is the result of Reverse En-
gineering State-coupled replicator dynamics injected with
the Q-learning Boltzmann mutation scheme. The contribu-
tions of this paper are twofold. One, we demonstrate the
importance of a mathematical multi-agent learning frame-
work by transferring insights from evolutionary game the-
ory to reinforcement learning. Two, the resulting learn-
ing algorithm successfully inherits the convergence behavior
of the reverse engineered dynamical system. Results show
that RESQ-learning provides convergence to pure as well as
mixed Nash equilibria in a selection of stateless and stochas-
tic multi-agent games.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning

Keywords
Reinforcement learning, Multi-agent learning, Evolutionary
game theory, Replicator dynamics, Stochastic games

1. INTRODUCTION
Modern society is characterized by a high level of inter-

connectedness, with the internet and mobile phone networks
being the most prominent example media. As a result, most
situations yield more than one actor, and should naturally
be modeled as multi-agent systems to account for their in-
herent structure and complexity. Example applications for
which significant progress has been facilitated using multi-
agent learning range from auctions and swarm robotics to
predicting political decisions [2, 7, 11, 13].

The learning performance of contemporary reinforcement
learning techniques has been studied in great depth exper-
imentally as well as formally for a diversity of single agent
control tasks [15]. Markov decision processes provide a math-
ematical framework to study single agent learning. However,
in general they are not applicable to multi-agent learning.
Once multiple adaptive agents simultaneously interact with
each other and the environment, the process becomes highly

dynamic and non-deterministic, thus violating the Markov
property. Evidently, there is a strong need for an adequate
theoretical framework modeling multi-agent learning. Re-
cently, a link between the learning dynamics of reinforce-
ment learning algorithms and evolutionary game theory has
been established, providing useful insights into the learning
dynamics [1, 3, 17, 18]. In particular, in [1] the authors have
derived a formal relation between multi-agent reinforcement
learning and the replicator dynamics. This relation between
replicators and reinforcement learning has been extended
to different algorithms such as learning automata and Q-
learning in [9, 18].

Exploiting the link between reinforcement learning and
evolutionary game theory is beneficial for a number of rea-
sons. The majority of state of the art reinforcement learning
algorithms are blackbox models. This makes it difficult to
gain detailed insight into the learning process and parameter
tuning becomes a cumbersome task. Analyzing the learning
dynamics helps to determine parameter configurations prior
to actual employment in the task domain. Furthermore, the
possibility to formally analyze multi-agent learning helps to
derive and compare new algorithms, which has been success-
fully demonstrated for lenient Q-learning in [12].

However, the evolutionary game theoretic framework has
been limited to either non-explorative learning in multi-
ple states [6], or explorative single-state learning [17, 18].
The investigation of single-state learning in the latter source
has shown, that exploration facilitates convergence to mixed
equilibria and allows to overcome local optima, while non-
explorative learning may end up in limit cycles. Therefore,
this article designs a state-coupled system with the desired
convergence behavior, using insights about Q-learning with
Boltzmann exploration. Subsequently, this system will be
reverse engineered, resulting in the derivation of Reverse
Engineered State-coupled Q-exploration (RESQ) learning, a
new multi-agent learning algorithm for stochastic games.
RESQ learning is based on model-free learners with a min-
imum of required information (current state and reward
feedback); agents maintain a policy only over their own ac-
tion space. Thereby it constitutes a substantial advantage
over joint-action learning approaches, such as Nash-Q [8] or
Friend-or-foe (FFQ) [10]. Experiments confirm the match
of the introduced algorithm with its evolutionary dynami-
cal system. Furthermore, convergence to stable points in a
selection of two-state matrix games is shown.

This paper is divided into two main parts: the forward
and the reverse approach. First, Section 2 presents the for-
ward approach, modeling multi-agent reinforcement learning

within an evolutionary game theoretic framework. Second,
the inverse approach, reverse engineering the RESQ-learning
algorithm is demonstrated in Section 3. Section 4 delivers
a comparative study of the newly devised algorithm and its
dynamics. Section 5 concludes this article.

2. FORWARD APPROACH
An adequate theoretical framework modeling multi-agent

learning dynamics has long been lacking [14, 16]. Recently,
an evolutionary game theoretic approach using replicator
dynamics is employed to fill this gap. Replicator dynamics
are a methodology of evolutionary game theory to model the
dynamical evolution of strategies. Exploiting the link be-
tween reinforcement learning and evolutionary game theory
is beneficial for a variety of reasons. Analyzing the learn-
ing dynamics helps to gain further insight into the learning
dynamics and to determine parameter configurations before
learners are actually employed in the task domain. We call
this the forward approach.

2.1 Stateless learning dynamics
First, we focus on model free, stateless and independent

learners. This means interacting agents do not model each
other; they only act upon the experience collected by exper-
imenting with the environment. Furthermore, no environ-
mental state is considered which means that the perception
of the environment is limited to the reinforcement signal.
While these restrictions are not negligible they allow for sim-
ple algorithms that can be treated analytically.

2.1.1 Learning automata
A learning automaton (LA) uses the basic policy iteration

reinforcement learning scheme. An initial random policy is
used to explore the environment; by monitoring the rein-
forcement signal, the policy is updated in order to learn the
optimal policy and maximize the expected reward.

The class of finite action-set learning automata consid-
ers only automata that optimize their policies over a finite
action-set A = {1, . . . , k} with k some finite integer. One
optimization step, called epoch, is divided into two parts:
action selection and policy update. At the beginning of an
epoch t, the automaton draws a random action a(t) accord-
ing to the probability vector π(t), called policy. Based on the
action a(t), the environment responds with a reinforcement
signal r(t), called reward. Hereafter, the automaton uses
the reward r(t) to update π(t) to the new policy π(t + 1).
The learning automaton update rule using the linear reward-
inaction scheme is given below.

πi(t+ 1)← πi(t) +

(
αr (t) (1− πi(t)) if a (t) = i
−αr (t)πi(t) otherwise

(1)

where r(t) ∈ [0, 1]. The reward parameter α ∈ [0, 1] deter-
mines the learning rate of the automaton.

2.1.2 Q-learning with Boltzmann exploration
In contrast to learning automata, Q-learners maintain a

value estimation Qi(t) of the expected (discounted) reward
for each action and are hence known as value iterators. We
use Frequency Adjusted Q-learning (FAQ), a slight varia-
tion of the original Q-learning update rule [9]. The FAQ
update rule with learning rate α and discount factor γ is

given below.

Qi(t+ 1)←Qi(t) + min

„
β

xi
, 1

«
· α
„
ri(t) + γ argmax

j
Qj(t)−Qi(t)

«
Again πi denotes the probability of selecting action i. This
policy is generated using a function π(Q) = (π1, . . . , πk).
The most prominent examples of such policy generators are
ε-greedy and Boltzmann exploration schemes [15]. For the
dynamics of ε-greedy Q-learning we refer to [4]. This arti-
cle exclusively discusses Q-learning with Boltzmann explo-
ration. It is defined by the following function, mapping Q-
values to policies, while balancing exploration and exploita-
tion using a temperature parameter τ :

πi(Q, τ) =
eτ
−1QiP

j e
τ−1Qj

The parameter τ lends its interpretation as temperature
from the domain of physics. High temperatures lead to
stochasticity and random exploration, selecting all actions
almost equally likely regardless of their Q-values. In con-
trast, low temperatures lead to high exploitation of the Q-
values, selecting the action with the highest Q-value with
probability close to one. Intermediate values prefer actions
proportionally to their relative competitiveness. In many
applications, the temperature parameter is decreased over
time, allowing initially high exploration and eventual ex-
ploitation of the knowledge encoded in the Q-values. Within
the scope of this article, the temperature is kept constant
for analytical simplicity and coherence with the derivations
in [17, 18].

2.1.3 Replicator dynamics of learning automata
Using the example of learning automata, this section demon-

strates the forward approach to modeling multi-agent re-
inforcement learning within a evolutionary game theoretic
framework. In particular, we indicate the mathematical re-
lation between learning automata and the multi-population
replicator dynamics. For the full prove we refer to Börgers
et al. [1].

The continuous time two-population replicator dynamics
are defined by the following system of differential equations:

dπi
dt

= πi
h
(Aσ)i − π

′Aσ
i

dσj
dt

= σj
h
(Bπ)j − σ

′Bπ
i (2)

where A and B are the normal form game payoff matrices
for player 1 and 2 respectively. The probability vector π
describes the frequency of all pure strategies (replicators)
for player 1. Success of a replicator i is measured by the
difference between its current payoff (Aσ)i and the average
payoff π′Aσ of the entire population π against the strategy
of player 2.

The policy change in (1) depends on action a (t) selected
at time t. We now assume that an agent receives an imme-
diate reward for each possible action rather than just the
feedback for this specific action a(t). Furthermore, let the
reward r̄i for action i be the average reward that action i
yields given that all other agents play according to their cur-
rent policies. Finally, the action probability change in (1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

LA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

LA dynamics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

FAQ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

FAQ dynamics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

LA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

LA dynamics

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

FAQ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1

!1
2

FAQ dynamics

Figure 1: Overview of trajectory plots for stateless games: Prisoners’ Dilemma (top row) and Matching
Pennies game (bottom row).

is proportional to πi since πi determines the frequency of
action i. Consequently, (3) describes the expected average
policy change at time t.

E (∆πi (t)) = πi

24αr̄i (t) (1− πi (t)) +
X
j 6=i

(−αrj (t)πj (t))

35
= πiα

24r̄i (t)− r̄i (t)πi (t)−
X
j 6=i

(rj (t)πj (t))

35
= πiα

"
r̄i (t)−

X
j

(rj (t)πj (t))

#
(3)

If we apply (3) to a 2-player normal form game the con-
nection between automata games and replicator dynamics
becomes apparent. We consider a matrix game where A is
the payoff for agent 1 and B the payoff for agent 2; π and
σ are the two action probability distributions respectively.
Agent 1 receives an average payoff of r̄i = (Aσ)i for action
i against agent 2’s strategy σ. Hence, (3) can be rewritten
as:

E (∆πi (t)) = πiα

"
r̄i (t)−

X
j

(rj (t)πj (t))

#

= πiα

"
(Aσ)i −

X
j

“
(Aσ)j πj

”#

= πiα
h

(Aσ)i − π
′Aσ

i
(4)

Similarly, we can derive

E (∆σj (t)) = σjα
h

(Bπ)j − σ
′Bπ

i
(5)

for agent 2. Note that (4) and (5) correspond to the multi-
population replicator equations given in (2) scaled by the
learning rate α.

2.1.4 Dynamics of Q-learning
In [18] the authors extended the work of Borgers et al. [1]

to Q-learning. More precisely, they derived the dynamics of
the Q-learning process, which yields the following system of
differential equations, describing the learning dynamics for
a two-player stateless game:

dπi
dt

= πiα

τ−1

h
(Aσ)i − π

′Aσ
i
− log πi +

X
k

πk log πk

!
dσj
dt

= σjα

τ−1

h
(Bπ)j − σ

′Bπ
i
− log σj +

X
l

σl log σl

!
(6)

The equations contain a selection part, equal to the multi-
population replicator dynamics, and a mutation part, origi-
nating from the Bolzmann exploration scheme of FAQ. For
an elaborate discussion in terms of selection and mutation
operators we refer to [17, 18].

2.1.5 Example single-state game analysis
We now examine the learning dynamics for a selection of

2 x 2 matrix games, in particular we consider the Prisoners’
Dilemma and the Matching Pennies game. Reward matri-
ces for Prisoners’ Dilemma (left, Defect or Cooperate) and
Matching Pennies (right, Head or Tail) are given below:

D C
D 3, 3 0, 5
C 5, 0 1, 1

H T
H 1,−1 −1, 1
T −1, 1 1,−1

In all automata games the linear reward-inaction scheme
with a reward parameter α = 0.005 is used. Q-learners use
a learning rate of α = 0.005, discount factor γ = 0 and a
constant temperature τ = 0.02. Initial policies for learner
and replicator trajectory plots are generated randomly.

Figure 1 (top row) shows the dynamics in the single state
Prisoners’ Dilemma. The automata game as well as the cor-
responding replicator dynamics show similar evolution to-
ward the equilibrium strategy of mutual defection. Action
probabilities are plotted for action 1 (in this case cooperate);
x- and y-axis correspond to the action of player 1 and 2 re-
spectively. Hence, the Nash equilibrium point is located at
the origin (0, 0). FAQ-learners evolve to a joint policy close
to Nash. Constant temperature prohibits full convergence.

Learning in the Matching Pennies game, Figure 1 (bottom
row), shows cyclic behavior for automata games and its repli-
cator dynamics alike. FAQ-learning successfully converges
to the mixed equilibrium due to its exploration scheme.

2.2 Multi-state learning dynamics
The main limitation of the evolutionary game theoretic

approach to multi-agent learning has been its restriction to
stateless repeated games. Even though real-life tasks might
be modeled statelessly, the majority of such problems nat-
urally relates to multi-state situations. Vrancx et al. [20]
have made the first attempt to extend replicator dynamics
to multi-state games. More precisely, the authors have com-
bined replicator dynamics and piecewise dynamics, called
piecewise replicator dynamics, to model the learning behav-
ior of agents in stochastic games. Recently, this promising
proof of concept has been formally studied in [5] and ex-
tended to state-coupled replicator dynamics [6] which form
the foundation for the later described inverse approach.

2.2.1 Stochastic games
Stochastic games extend the concept of Markov decision

processes to multiple agents, and allow to model multi-state
games in an abstract manner. The concept of repeated
games is generalized by introducing probabilistic switching
between multiple states. At any time t, the game is in a
specific state featuring a particular payoff function and an
admissible action set for each player. Players take actions si-
multaneously and hereafter receive an immediate payoff de-
pending on their joint action. A transition function maps the
joint action space to a probability distribution over all states
which in turn determines the probabilistic state change. Thus,
similar to a Markov decision process, actions influence the
state transitions. A formal definition of stochastic games
(also called Markov games) is given below.

Definition 1. The game G =
˙
n, S,A, q, r, π1 . . . πn

¸
is

a stochastic game with n players and k states. At each stage
t, the game is in a state s ∈ S =

`
s1,. . .,sk

´
and each player

i chooses an action ai from its admissible action set Ai (s)
according to its strategy πi (s).

The payoff function r (s, a) :
Qn
i=1A

i (s) 7→ <n maps the
joint action a =

`
a1,. . .,an

´
to an immediate payoff value for

each player.
The transition function q(s, a) :

Qn
i=1A

i (s) 7→ ∆k−1 de-

termines the probabilistic state change, where ∆k−1 is the
(k − 1)-simplex and qs′ (s, a) is the transition probability from
state s to s′ under joint action a.

In this work we restrict our consideration to the set of
games where all states s ∈ S are in the same ergodic set.
The motivation for this restriction is two-folded. In the
presence of more than one ergodic set one could analyze
the corresponding sub-games separately. Furthermore, the
restriction ensures that the game has no absorbing states.

Games with absorbing states are of no particular interest in
respect to evolution or learning since any type of exploration
will eventually lead to absorption. The formal definition of
an ergodic set in stochastic games is given below.

Definition 2. In the context of a stochastic game G,
E ⊆ S is an ergodic set if and only if the following con-
ditions hold:
(a) For all s ∈ E, if G is in state s at stage t, then at t+ 1:

Pr (G in some state s′ ∈ E) = 1, and
(b) for all proper subsets E′ ⊂ E, (a) does not hold.

Note that in repeated games, player i either tries to maxi-
mize the limit of the average of stage rewards (e.g., Learning
Automata)

max
πi

lim inf
T→∞

1

T

TX
t=1

ri (t) (7)

or the discounted sum of stage rewards
PT
t=1 r

i (t) δt−1 with

0 < δ < 1 (e.g., Q-learning), where ri (t) is the immediate
stage reward for player i at time step t.

2.2.2 2-State Prisoners’ Dilemma
The 2-State Prisoners’ Dilemma is a stochastic game for

two players. The payoff matrices are given by`
A1, B1´=

„
3, 3 0, 10

10, 0 2, 2

«
,
`
A2, B2´=

„
4, 4 0, 10

10, 0 1, 1

«
.

Where As determines the payoff for player 1 and Bs for
player 2 in state s. The first action of each player is cooperate
and the second is defect. Player 1 receives r1 (s, a) = Asa1,a2
while player 2 gets r2 (s, a) = Bsa1,a2 for a given joint ac-
tion a = (a1, a2). Similarly, the transition probabilities are

given by the matrices Qs→s
′

where qs′ (s, a) = Qs→s
′

a1,a2 is the
probability for a transition from state s to state s′.

Qs
1→s2 =

„
0.1 0.9
0.9 0.1

«
, Qs

2→s1 =

„
0.1 0.9
0.9 0.1

«
The probabilities to continue in the same state after the

transition are qs1
`
s1, a

´
= Qs

1→s1
a1,a2 = 1−Qs

1→s2
a1,a2 and

qs2
`
s2, a

´
= Qs

2→s2
a1,a2 = 1−Qs

2→s1
a1,a2 .

Essentially a Prisoners’ Dilemma is played in both states,
and if regarded separately, defect is still a dominating strat-
egy. One might assume that the Nash equilibrium strat-
egy in this game is to defect at every stage. However, the
only pure stationary equilibria in this game reflect strategies
where one of the players defects in one state while cooper-
ating in the other and the second player does exactly the
opposite. Hence, a player betrays his opponent in one state
while being exploited himself in the other state.

2.2.3 2-State Matching Pennies game
Another 2-player, 2-actions and 2-state game is the 2-

State Matching Pennies game. This game has a mixed Nash
equilibrium with joint-strategies π1 = (.75, .25), π2 = (.5, .5)
in state 1 and π1 = (.25, .75), π2 = (.5, .5) in state 2. Payoff
and transition matrices are given below.`

A1, B1´=

„
1, 0 0, 1
0, 1 1, 0

«
,
`
A2, B2´=

„
0, 1 1, 0
1, 0 0, 1

«

Qs
1→s2 =

„
1 1
0 0

«
, Qs

2→s1 =

„
0 0
1 1

«

2.2.4 Networks of learning automata
To cope with stochastic games, the learning algorithms

in Section 2.1 need to be adopted to account for multiple
states. To this end, we use a network of automata for each
agent [19]. An agent associates a dedicated learning automa-
ton (LA) to each state of the game and control is passed on
from one automaton to another. Each LA tries to optimize
the policy in its state using the standard update rule given
in (1). Only a single LA is active and selects an action at
each stage of the game. However, the immediate reward
from the environment is not directly fed back to this LA.
Instead, when the LA becomes active again, i.e., next time
the same state is played, it is informed about the cumulative
reward gathered since the last activation and the time that
has passed by.

The reward feedback τ i for agent i’s automaton LAi(s)
associated with state s is defined as

τ i (t) =
∆ri

∆t
=

Pt−1
l=t0(s) r

i (l)

t− t0(s)
, (8)

where ri (t) is the immediate reward for agent i in epoch
t and t0(s) is the last occurrence function and determines
when states s was visited last. The reward feedback in
epoch t equals the cumulative reward ∆ri divided by time-
frame ∆t. The cumulative reward ∆ri is the sum over all im-
mediate rewards gathered in all states beginning with epoch
t0(s) and including the last epoch t− 1. The time-frame ∆t
measures the number of epochs that have passed since au-
tomaton LAi(s) has been active last. This means the state
policy is updated using the average stage reward over the
interim immediate rewards.

2.2.5 Average reward game
For a repeated automata game, let the objective of player

i at stage t0 be to maximize the limit average reward r̄i =
lim infT→∞

1
T

PT
t=t0

ri (t) as defined in (7). The scope of
this paper is restricted to stochastic games where the se-
quence of game states X (t) is ergodic. Hence, there exists
a stationary distribution x over all states, where fraction xs
determines the frequency of state s in X. Therefore, we
can rewrite r̄i as r̄i =

P
s∈S xsP

i (s), where P i (s) is the
expected payoff of player i in state s.

Now, let us assume the game is in state s at stage t0 and
players play a given joint action a in s and fixed strategies
π (s′) in all states but s. Then the limit average payoff
becomes

r̄ (s, a) = xsr (s, a) +
X

s′∈S−{s}

xs′P
i `s′´ , (9)

where

P i
`
s′
´

=
X

a′∈
Qn

i=1 A
i(s′)

r
`
s′, a′

´ nY
i=1

πia′i

`
s′
´!

.

An intuitive explanation of (9) goes as follows. At each
stage, players consider the infinite horizon of payoffs under
current strategies. We untangle the current state s from all
other states s′ 6= s and the limit average payoff r̄ becomes
the sum of the immediate payoff for joint action a in state
s and the expected payoffs in all other states. Payoffs are
weighted by the frequency xs of corresponding state occur-
rences. Thus, if players invariably play joint action a every
time the game is in state s and their fixed strategies π (s′)
for all other states, the limit average reward for T → ∞ is
expressed by (9).

Since a specific joint action a is played in state s, the
stationary distribution x depends on s and a as well. A
formal definition is given below.

Definition 3. For G =
˙
n, S,A, q, r, π1 . . . πn

¸
where S

itself is the only ergodic set in S =
`
s1 . . . sk

´
, we say x (s, a)

is a stationary distribution of the stochastic game G if and
only if

P
z∈S xz (s, a) = 1 and

xz (s, a) = xs (s, a) qz (s, a) +
X

s′∈S−{s}

xs′ (s, a)Qi
`
s′
´
,

where

Qi
`
s′
´

=
X

a′∈
Qn

i=1 A
i(s′)

qz
`
s′, a′

´ nY
i=1

πia′i

`
s′
´!

.

Based on this notion of stationary distribution and (9) we
can define the average reward game as follows.

Definition 4. For a stochastic game G where S itself is
the only ergodic set in S =

`
s1 . . . sk

´
, we define the average

reward game for some state s ∈ S as the normal-form game

Ḡ
`
s, π1 . . . πn

´
=
˙
n,A1 (s) . . . An (s) , r̄, π1 (s) . . . πn (s)

¸
,

where each player i plays a fixed strategy πi (s′) in all states
s′ 6= s. The payoff function r̄ is given by

r̄ (s, a) = xs (s, a) r (s, a) +
X

s′∈S−{s}

xs′ (s, a)P i
`
s′
´
.

2.2.6 State-coupled replicator dynamics
We reconsider the replicator equations for population π

as given in (2):

dπi
dt

= πi
h
(Aσ)i − π

′Aσ
i

Essentially, the payoff of an individual in population π, play-
ing pure strategy i against population σ, is compared to the
average payoff of population π. In the context of an average
reward game Ḡ with payoff function r̄ the expected payoff
for player i and pure action j is given by

P ij (s) =
X

a∈
Q

l 6=i A
l(s)

0@r̄i (a∗)
Y
l 6=i

πla∗
l

(s)

1A ,

where a∗ =
`
a1 . . . ai−1, j, ai . . . an

´
. This means that we

enumerate all possible joint actions a with fixed action j
for agent i. In general, for some mixed strategy ω, agent i
receives an expected payoff of

P i (s, ω) =
X

j∈Ai(s)

24ωj X
a∈

Q
l 6=i A

l(s)

0@r̄i (s, a∗)
Y
l 6=i

πla∗
l

(s)

1A35 .
If each player i is represented by a population πi, we can
set up a system of differential equations, each similar to
(2), where the payoff matrix A is substituted by the average
reward game payoff r̄. Furthermore, σ now represents all
remaining populations πl where l 6= i.

Definition 5. The multi-population state-coupled repli-
cator dynamics are defined by the following system of differ-
ential equations:

dπij (s)

dt
= πij xs (π)

h
P i (s, ej)− P i

“
s, πi (s)

”i
, (10)

where ej is the jth-unit vector. P i (s, ω) is the expected pay-
off for an individual of population i playing some strategy ω
in state s. P i is defined as

P i (s, ω) =
X

j∈Ai(s)

24ωj X
a∈

Q
l6=i A

l(s)

0@r̄i (s, a∗)
Y
l 6=i

πla∗
l

(s)

1A35 ,
where r̄ is the payoff function of Ḡ

`
s, π1 . . . πn

´
and

a∗ =
“
a1 . . . ai−1, j, ai . . . an

”
.

Furthermore, x is the stationary distribution over all states
S under π, with X

s∈S

xs (π) = 1 and

xs (π) =
X
z∈S

24xz (π)
X

a∈
Qn

i=1 A
i(s)

qs (z, a)

nY
i=1

πiai
(s)

!35 .
In total this system has N =

P
s∈S

Pn
i=1 |A

i (s) | replicator
equations.

In essence, state-coupled replicator dynamics use direct
state-coupling by incorporating the expected payoff in all
states under current strategies, weighted by the frequency
of state occurrences.

Previous work has shown that state-coupled replicator
dynamics converge to pure Nash equilibria in general-sum
stochastic games such as the 2-State Prisoners’ Dilemma [6].
However, state-coupled replicator dynamics fail to converge
to mixed equilibria. We observe cycling behavior, similar to
the stateless situation of Matching Pennies (see Figure 2).

3. INVERSE APPROACH
The forward approach has focused on deriving predictive

models for the learning dynamics of existing multi-agent re-
inforcement learners. These models help to gain deeper in-
sight and allow to tune parameter settings. In this section
we demonstrate the inverse approach, designing a dynamical
system that does indeed converge to pure and mixed Nash
equilibria and reverse re-engineering that system, resulting
in a new multi-agent reinforcement learning algorithm, i.e.
RESQ-learning.

Results for stateless games provide evidence that explo-
ration is the key to prevent cycling around attractors. Hence,
we aim to combine the exploration-mutation term of FAQ-
learning dynamics with state-coupled replicator dynamics.

3.1 Linking LA and Q-learning dynamics
First, we link the dynamics of learning automata and Q-

learning for the stateless case. We recall from Section 2.1.3
that the learning dynamics of LA correspond to the standard
multi-population replicators scaled by the learning rate α:

dπi
dt

= πiα
h
(Aσ)i − π

′Aσ
i

The FAQ replicator dynamics (see Section 2.1.4) contain a
selection part equivalent to the multi-population replicator
dynamics, and an additional mutation part originating from

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1(s1)

!1
2(s1)

SC−RD, state 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1(s2)

!1
2(s2)

SC−RD, state 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1(s1)

!1
2(s1)

RESQ dynamics, state 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1(s2)

!1
2(s2)

RESQ dynamics, state 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1(s1)

!1
2(s1)

RESQ, state 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

!1
1(s2)

!1
2(s2)

RESQ, state 2

Figure 2: Comparison between SC-RD dynamics,
RESQ dynamics and RESQ-learning (α = 0.004,
τ = 0.04) in the 2-State Matching Pennies game.

the Bolzmann exploration scheme:

dπi
dt

= πiβ

τ−1

h
(Aσ)i − π

′Aσ
i
− log πi +

X
k

πk log πk

!

= πiβτ
−1
h
(Aσ)i − π

′Aσ
i
− πiβ

log πi +

X
k

πk log πk

!
The learning rate of FAQ is now denoted by β. Let us as-
sume α = βτ−1 ⇒ β = ατ . Note that from β ∈ [0, 1] follows

0 ≤ ατ−1 ≤ 1.

Then we can rewrite the FAQ replicator equation as follows:

dπi
dt

= πiα
h
(Aσ)i − π

′Aσ
i
− πiατ

log πi +

X
k

πk log πk

!
In the limit limτ→0 the mutation term collapses and the
dynamics of learning automata become:

dπi
dt

= πiα
h
(Aσ)i − π

′Aσ
i

3.2 State-coupled RD with mutation
After we have established the connection between the learn-

ing dynamics of FAQ-learning and learning automata, ex-
tending this link to multi-state games is straightforward.

The mutation term

−τ
„

log πi +
X
k

πk log πk

«
(11)

is solely dependent on the agent’s policy π and thus inde-
pendent of any payoff computation. Therefore, the average
reward game remains the sound measure for the limit of
the average of stage rewards under the assumptions made
in Section 2.2.5. The equations of the dynamical system
in (2.2.5) are complemented with the mutation term (11),
resulting in the following state-coupled replicator equations
with mutation:

dπij (s)

dt
= πij xs (π)

" h
P i (s, ej)− P i

“
s, πi (s)

”i
−τ
„

log πij +
X
k

πik log πik

«# (12)

In the next section we introduces the corresponding RESQ-
learning algorithm.

3.3 RESQ-learning
In [6] the authors have shown that maximizing the ex-

pected average stage reward over interim immediate rewards
relates to the average reward game played in state-coupled
replicator dynamics. We reverse this result to obtain a
learner equivalent to state-coupled replicator dynamics with
mutation.

Analog to the description in Section 2.2.4 a network of
learners is used for each agent i. The reward feedback signal
is equal to (8) while the update rule now incorporates the
same exploration term as in (12). If a (t) = i :

πi(t+1)← πi(t)+α

"
r (t) (1−πi(t))−τ

log πij +

X
k

πik log πik

!#
otherwise:

πi(t+1)← πi(t)+α

"
−r (t)πi(t)−τ

log πij +

X
k

πik log πik

!#
Hence, RESQ-learning is essentially a multi-state policy it-
erator using exploration equivalent to the Boltzmann policy
generation scheme.

4. RESULTS AND DISCUSSION
This section sets the newly proposed RESQ-learning al-

gorithm in perspective by examining the underlying dynam-
ics of state-coupled replicator dynamics with mutation and
traces of the resulting learning algorithm.

First, we explore the behavior of the dynamical system,
as derived in Section 3.2, and verify the desired convergence
behavior, i.e., convergence to pure and mixed Nash equilib-
ria. Figure 3 shows multiple trajectory traces in the 2-State
Prisoners’ Dilemma, originating from random strategy pro-
files in both states. Analysis reveals that all trajectories
converge close to either one of the two pure Nash equilib-

0
500

1000
1500 0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

!1
1(s1)

RESQ dynamics, state 1

t

! 12 (s
1)

0
500

1000
1500 0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

!1
1(s2)

RESQ dynamics, state 2

t

! 12 (s
2)

Figure 3: RESQ-learning dynamics (α = 0.004, τ = 0.02) in the 2-State Prisoners’ Dilemma.

0
500

1000
1500

2000
2500 0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

!
1

1
(s

1
)

RESQ dynamics, state 1

t

!
12
(s

1
)

0 500 1000 1500 2000
2500

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

!
1

1
(s

2
)

RESQ dynamics, state 2

t

!
12
(s

2
)

Figure 4: RESQ-learning (α = 0.004, τ = 0.04) in the 2-State Matching Pennies game.

rium points described in Section 2.2.2. As mentioned be-
fore for the stateless case, constant temperature prohibits
full convergence. Figure 4 shows trajectory traces in the
2-State Matching Pennies game. Again, all traces converge
close to Nash, thus affirming the statement that exploration-
mutation is crucial to prevent cycling and to converge in
games with mixed optimal strategies.

Figure 2 shows a comparison between state-coupled repli-
cator dynamics (SC-RD), the RESQ-dynamics as in (12),
and an empirical learning trace of RESQ-learners. As above-
mentioned, ”pure” state-coupled replicator dynamics with-
out the exploration-mutation term fail to converge. The tra-
jectory of the state space of this dynamical system exhibits
cycling behavior around the mixed Naish equilibrium (see
Section 2.2.3). RESQ-dynamics successfully converge ε-near
to the Nash-optimal joint policy. Furthermore, we present
the learning trace of two RESQ-learners in order to judge
the predictive quality of the coresponding state-coupled dy-
namics with mutation. Due to the stochasticity involved in
the action selection process, the learning trace is more noisy.
However, we clearly observe that RESQ-learning indeed suc-
cessfully inherits the convergence behavior of state-coupled
replicator dynamics with mutation.

Further experiments are required to verify the performance
of RESQ-learning in real applications and to gain insight
into how it competes with multi-state Q-learning and the
SARSA algorithm [15]. In particular, the speed and qual-
ity of convergence need to be considered. Therefore, the
theoretical framework needs to be extended to account for
decreasing temperature to balance exploration and exploita-
tion over time.

5. CONCLUSIONS
The contributions of this article can be summarized as

follows. First, we have demonstrated the forward approach
to modeling multi-agent reinforcement learning within an
evolutionary game theoretic framework. In particular, the
stateless learning dynamics of learning automata and FAQ-
learning as well as state-coupled replicator dynamics for
stochastic games have been discussed. Based on the in-
sights that were gained from the forward approach, RESQ-
learning has been introduced by reverse engineering state-
coupled replicator dynamics injected with the Q-learning
Boltzmann mutation scheme. We have provided empirical
confirmation that RESQ-learning successfully inherits the
convergence behavior of its evolutionary counter part. Re-
sults have shown that RESQ-learning provides convergence
to pure as well as mixed Nash equilibria in a selection of
stateless and stochastic multi-agent games.

6. REFERENCES
[1] Tilman Börgers and Rajiv Sarin. Learning through

reinforcement and replicator dynamics. Journal of
Econ. Theory, 77(1), 1997.

[2] Bruce Bueno de Mesquita. Game theory, political
economy, and the evolving study of war and peace.
American Political Science Review, 100(4):637–642,
November 2006.

[3] Herbert Gintis. Game Theory Evolving. A
Problem-Centered Introduction to Modelling Strategic
Interaction. Princeton University Press, Princeton,
2000.

[4] Eduardo Rodrigues Gomes and Ryszard Kowalczyk.
Dynamic analysis of multiagent q-learning with
epsilon-greedy exploration. In ICML, 2009.

[5] Daniel Hennes, Karl Tuyls, and Matthias Rauterberg.
Formalizing multi-state learning dynamics. In Proc. of
2009 Intl. Conf. on Intelligent Agent Technology, 2008.

[6] Daniel Hennes, Karl Tuyls, and Matthias Rauterberg.
State-coupled replicator dynamics. In Proc. of 8th
Intl. Conf. on Autonomous Agents and Multiagent
Systems, 2009.

[7] Shlomit Hon-Snir, Dov Monderer, and Aner Sela. A
learning approach to auctions. Journal of Economic
Theory, 82:65–88, November 1998.

[8] Junling Hu and Michael P. Wellman. Nash q-learning
for general-sum stochastic games. Journal of Machine
Learning, 4:1039–1069, 2003.

[9] Michael Kaisers and Karl Tuyls. Frequency adjusted
multi-agent q-learning. In Proc. of 9th Intl. Conf. on
Autonomous Agents and Multiagent Systems, 2010.

[10] Michael L. Littman. Friend-or-foe q-learning in
general-sum games. In ICML, pages 322–328, 2001.

[11] Shervin Nouyan, Roderich Groß, Michael Bonani,
Francesco Mondada, and Marco Dorigo. Teamwork in
self-organized robot colonies. Transactions on
Evolutionary Computation, 13(4):695–711, 2009.

[12] Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical
advantages of lenient learners: An evolutionary game
theoretic perspective. Journal of Machine Learning
Research, 9:423–457, 2008.

[13] S. Phelps, M. Marcinkiewicz, and S. Parsons. A novel
method for automatic strategy acquisition in n-player
non-zero-sum games. In AAMAS ’06: Proceedings of
the fifth international joint conference on Autonomous
agents and multiagent systems, pages 705–712,
Hakodate, Japan, 2006. ACM.

[14] Y. Shoham, R. Powers, and T. Grenager. If
multi-agent learning is the answer, what is the
question? Journal of Artificial Intelligence,
171(7):365–377, 2006.

[15] Richard S. Sutton and Aandrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[16] K. Tuyls and S. Parsons. What evolutionary game
theory tells us about multiagent learning. Artificial
Intelligence, 171(7):115–153, 2007.

[17] Karl Tuyls, Pieter J. ’t Hoen, and Bram
Vanschoenwinkel. An evolutionary dynamical analysis
of multi-agent learning in iterated games. Autonomous
Agents and Multi-Agent Systems, 12:115–153, 2005.

[18] Karl Tuyls, Katja Verbeeck, and Tom Lenaerts. A
selection-mutation model for Q-learning in multi-agent
systems. In Proc. of 2nd Intl. Conf. on Autonomous
Agents and Multiagent Systems, 2003.

[19] Katja Verbeeck, Peter Vrancx, and Ann Nowé.
Networks of learning automata and limiting games. In
ALAMAS, 2006.

[20] Peter Vrancx, Karl Tuyls, Ronald Westra, and Ann
Nowé. Switching dynamics of multi-agent learning. In
Proc. of 7th Intl. Conf. on Autonomous Agents and
Multiagent Systems, 2008.

