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Abstract

Overcoming convergence to suboptimal solutions in codperenulti-agent games has been a main chal-
lenge in reinforcement learning. The concept of “lenienkbg$ been proposed to be more forgiving for
initial mis-coordination. It has been shown theoreticétigt an arbitrarily high certainty of convergence to
the global optimum can be achieved by increasing the dedieaiency, but the relation of the evolution-
ary game theoretic model to the Lenient Q-learning algoritalied on the simplifying assumption that all
actions would be updated simultaneously. Building on intsidrom Frequency Adjusted Q-learning, this
article introduces the variation Lenient Frequency AdjdsD-learning that matches the theoretical model
precisely, and allows for arbitrarily high convergence &wd?o optimal equilibria in cooperative games.

1 Introduction

Many strategic interactions can be characterized as aoldive, i.e., success primarily depends on the
coordination of actions executed by different agents. Swdperative multi-agent games may yield a vast
number of stable but suboptimal solutions, in which eitlheragents are partitioned into coordinated sub-
groups, or complete coordination on suboptimal joint axgis achieved. Cooperative multi-agent learning
aims to overcome these challenges. However, multi-agamtileg is significantly more complex than single-
agent learning, since the presence of other adaptive ageiss the environment dynamic, and the optimal
behavior depends on the other agents’ strategies.

Recently, an evolutionary game theoretic approach to ragkint reinforcement learning has been pro-
posed to facilitate the understanding of multi-agent legrrdynamics [1, 10]. This approach replaces
individual rationality from game theory by concepts likéestion and mutation from evolutionary biology
to describe the change in a population of candidate stege@he replicator dynamics that govern the pop-
ulation change have been formally linked to the behavidrahge of multi-agent reinforcement learners.

This article demonstrates the strength of the evolutiogarye theoretic approach by introducing a vari-
ation of Q-learning based on insights from evolutionary gaheory. Recently, it has been shown that the
introduction of leniency to the evolutionary model of Q#eiag improves convergence to Pareto optimal
equilibria in cooperative games [8]. A lenient version oéfuency Adjusted Q-learning [5] is proposed,
which implements this evolutionary model. In addition, thatch between the model and the proposed
learning algorithm is demonstrated empirically, and theaat certain convergence to Pareto optimal equi-
libria with growing degree of leniency is illustrated.

The remainder of this article is structured as follows. B&c® summarizes the necessary background on
evolutionary game theory and reinforcement learning. Dhmal link between these two fields is presented
and the proposed Lenient Frequency Adjusted Q-learniraristhgn is introduced subsequently in Section 3.
The theoretical arguments are complemented in Section 4 leyrirical study of the new algorithm and
its dynamics. These experiments are discussed in Sectighiéh also concludes this article.

2 Background

This section presents a brief overview of evolutionary gémeery and reinforcement learning. For a more
elaborate discussion of these two fields, the interesteteraéa referred to [4] and [9], respectively.



2.1 Evolutionary gametheory

Game theory models the interaction between players as a,gamdéich each player has a set of actions
to choose from. All players have to select an action simelasly, upon which they receive a payoff that
depends on the combination of actions played. The goal fr player is to come up with a strategy that
maximizes its payoff in the game. It is assumed that the ptagee rational, in the sense that each player
tries to maximize its own payoff irrespective of the payaffshe others [3].

The payoffs can be conveniently represented in the bi-m@trj B). A bi-matrix can, just like a normal
matrix, contain any number of rows and columns; “bi” just éefs the fact that each cell contains two
numbers: the payoffs for both players [3]. Suppose the rayeiplays actionand the column player plays
Jj, then the bi-matriX 4, B) gives the payoffsi;; to the row player and;; to the column player. Figure 1
presents the payoff bi-matrices of three games that are tasedaluate the proposed learning method in
this article. The Coordination Game and the Stag Hunt arpe@ive games, where both players prefer
the same outcomé:s, S) in the Stag Hunt andO, O) in the Coordination Game. Matching Pennies is an
example of a competitive game, in which a win for one playexlisss for the other.
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Figure 1. Normalized payoff matrices for the three games considerdais article.

2.1.1 Paretooptimality

An important concept in game theory is the Nash equilibritdg); A set of strategies for all players forms
a Nash equilibrium if no single player can do better by plgyandifferent strategy [3]. In the Stag Hunt,
both (S, S) and(H, H) are NE; the Coordination Game has NE, O) and(F, F'); and Matching Pennies
has a mixed NE in which both players play actifihwith probability 3. The examples of the Stag Hunt
and Coordination Game show that not all NE of a game may bellgquaferable. The concept op Pareto
optimality captures this idea: an outcome is Pareto optifmad other outcome leads to a higher payoff for
at least one payer, without reducing the payoff to any otleygy [4]. The outcome§S, S) and(O, O) are
the Pareto optimal NE of the Stag Hunt and the Coordinatiom&avatching Pennies has only one NE
which is therefore also Pareto optimal.

2.1.2 Replicator dynamics

Classical game theory assumes that full information islalk to the player, which together with the as-
sumption of hyper-rationality does not reflect the dynainmzdure of most real world environments [4].
Evolutionary Game Theory (EGT) was developed to overcorisdithitation, by adopting the idea of evo-
lution from biology to describe how players can learn to myite their strategy without requiring complete
information [6]. The theory provides a solid basis to studydecision making process of boundedly rational
players in an uncertain environment.

Central to evolutionary game theory are the replicator dying, that describe how a population of
candidate strategies evolves over time. Supposing that@ager is represented by a population consisting
of pure strategies, the fact that a player plays actiomith probabilityp can be translated as a fractipiof
the population playing pure stratedly In a 2-player game, the process of change over time in tigeérecy
distribution of the candidate strategies is described by

d(;i = i[(Ay)i — " Ay] (1)
Wi (B~ " B @

wherez (y) is the frequency distribution for player 1 (2), add B) represents its individual payoff matrix.
These equations are the replicator dynamics that coresthetlink between EGT and RL.



2.2 Reinforcement learning

A reinforcement learning agent has to learn by trial-angenteraction with its environment. It has no
explicit knowledge on how to achieve its goal, it can onlygaére the results of its actions by means of
punishment and reward. The agent’s goal is to maximize s over time by learning what the best
action is in each situation. This article considers sirgjge reinforcement learning. Each time step the
agent performs an actionupon which it receives a rewarg € [0,1]. Based on this reward the agent
updates its policy which is defined as a probability distiifiu over its actionse, wherex; denotes the
probability of selecting action. The way in which the policy is updated is specific to eachfoegagement
learning algorithm.

A distinction has to be made between single-agent and ragéit RL. Whereas in single-agent envi-
ronments the Markov property may be assumed, multi-agerit@mments are inherently non-stationary,
and as a result proofs of convergence that hold for the singémt case are no longer valid. Nevertheless,
single-agent RL algorithms have been shown empiricallyrt@pce good results in multi-agent settings as
well [2]. This article considers a variation of the Q-leargialgorithm, which is introduced below.

2.2.1 Q-learning

Q-learning is an off-policy reinforcement learning methmased on the idea of temporal difference (TD)
learning [12]. TD methods generally consist of two stepdicgevaluation and policy iteration. The first
step estimates a value functigh that is then used in the second step to update the polid@-learning
differs from on-policy TD methods in that it approximatee thue action-value functio* independent of
the policy being followed [9]. Single-state Q-learning sitlee action-value update function

Qi(t+1)<—Qi(t)+Oé Ti(t—i-l)—l—'ymjaij(t)—Qi(ﬁ) (3)

to refine@ at every time step, whergis the action taken at timg « controls the learning step size,
and~ discounts future rewards. Only the value of the selecteidraés updated; for all other actions
Q;(t+ 1) «— Q,(t). The policy plays no role in this update process; it is onlgduto determine which
action is selected. Instead, the action-value update sdgaisrely on the reward received and the expected
value of the next iteration, expressed by the termax; @;(t). After each update of), the new optimal
policy is derived using the Boltzmann exploration mechanilsat converts the action-value functighto
the probability distribution, using a temperature parameteto control the balance between exploration
and exploitation:

eQi'T_l

A high temperature drives the mechanism towards explardtydeveling the action probabilities, whereas
a low temperature promotes exploitation by favoring adiaith a high@-value. Q-learning is proven to
converge to the true action-value functi@r in a Markovian environment, given that each action is selbct
(and its action-value is updated) an infinite number of tifies.

(4)

Xr; =

2.2.2 Lenient Q-learning

Lenient Q-learning is a learning method specifically tabbto cooperative multi-agent environments. When
multiple independent agents learn together in such an@mwient, it can often happen that they converge
to suboptimal solutions whereas a single agent might hadifficulty at all in finding the optimum. One
of the reasons is that the environment is unpredictableesattions taken by other agents influence the
rewards received. Initial mis-coordination on a Paretdnogk solution may result in severe punishment,
and as a result the Q-value of the Pareto optimal action menedse. In the end, this can drive the agents
away from the Pareto optimum, resulting in suboptimal ba&ra\his effect can be reduced by introducing
leniency, i.e., by ignoring initial mis-coordination. lak been shown that leniency can greatly improve the
accuracy of an agent's projection of the search space indbimhing of the learning process [7]. It thereby
overcomes the problem that initial mis-coordination miglaid to suboptimal solutions in the long run.
Leniency towards others can be achieved by having the agjeoté some low rewards and only consider
the highest of several samples. For example, the agent miighys update its policy when an action yields
a higher reward than expected. When the reward is lowerobshs probabilistically: in the beginning it



should show more lenience towards its teammates and ignanelow rewards, whereas in the end it might
be more critical and always update its policy. A simpler aggh is to have the agent collectewards for

a single action before it updates the value of this actiomtbas the highest of thoserewards [8]. This
results in a fixed degree of leniency, expressed by the vdlue o

3 Connecting evolutionary gametheory and reinforcement learning

The relation between reinforcement learning and evolatipgame theory was first formalized by [1], who
proved that the continuous time limit of Cross learning, ecsfic reinforcement learning method, converges
to the replicator dynamics. Recently, evolutionary dyreahmodels of Q-learning and Lenient Q-learning
have been developed with the intention to provide a mordtimtuway to understand the behavior of re-
inforcement learning [11, 8]. However, these two modelsthsesimplifying assumption that all actions
would be updated at each iteration. This leads to a discoyplagtween the predicted and actual learning
behavior. For Q-learning, this difference has been residhyethe variation Frequency Adjusted Q-learning
(FAQ), which inherits the preferable behavior of the eviolnary model [5]. Combining the insights from
leniency and frequency adjustment, a lenient version oF#@ algorithm, called Lenient Frequency Ad-
justed Q-learning (LFAQ), is proposed that adheres to tediptions of the evolutionary model of Lenient
Q-learning in the same way that FAQ adheres to the model &aiing.

3.1 Frequency Adjusted Q-learning

Differences between the actual behavior of reinforcemeantrling and the evolutionary model have been
observed. Itis known that such differences can occur whesttp size of the learning is large [1]. However,
the discrepancies observed in Q-learning may remain whestdp size is decreased [5]. The evolutionary
model was derived under the assumption that all actions pdatad equally often [11], but the action-
values in Q-learning are updated asynchronously: the \aéflaa action is only updated when it is selected.
If synchronous updates incur a change\d),;, then asynchronous updates incur a change Af);, where

x; is the probability of selecting actioh Due to the simplifying assumption, the derivative of thé@ac
value update function used in the evolutionary model of g differs by a factor; from the actual
Q-learning behavior. It is further argued that the evoludicy model predicts more rational behavior than
the Q-learning algorithm actually exhibits, and thereffikintroduce the variation Frequency Adjusted
Q-learning (FAQ) that perfectly fits the evolutionary mad€he action-value update is weighted inversely
proportional to the probability with which the action iseeted, thereby simulating synchronous updates:

1
Q:it+1) — Qi(t) + —«a [r(t +1)+ymaxQ;(t) — Qi(t)} (5)
A J
However, this function is only valid in the infinitesimal litof «, as otherwise the fractioa/xz; may
become larger than 1. This would violate the assumptionguwtiich the algorithm converges [12]. In
order for the method to be numerically applicable, the aisthlefine a generalized version of the frequency
adjusted Q-learning method, by introducing a varigbke [0, 1):

Qi(t+1) « Q;(t) + min (a:ﬁ’ 1) o [r(t +1)+ 'ym]aij(t) — Qi(ﬁ)] (6)
Wheng = 1, FAQ reduces to normal Q-learning; therefore this valuex@uwgled from the allowed range
of 4. Itis shown that the value of controls the area of the policy space for which FAQ is valid. [5

x; > 3, FAQ behaves according to the evolutionary dynamics; & 3, FAQ behaves equivalent to regular
Q-learning. Given the range of possible rewards and a speeifiperature, the most extreme policy that
may arise can be computed using the Boltzmann policy gengratnction. Hence, a temperaturecan

be selected according & such thatr; > 3 is guaranteed in FAQ-learning, and thus the algorithm asway
behaves according to the evolutionary model. Theorefictils means that the range @fcan be further
narrowed, since it reduces the policy space from both sitles;3 < % Practically,5 should be chosen as
small as possible to ensure the validity of FAQ for a large phthe policy space.

The behavior of FAQ has been shown to match the evolutionadetthat was originally designed for
Q-learning, whereas Q-learning itself deviates from it [Sjirthermore, FAQ is less sensitive to the initial-
ization of the Q-values, whereas Q-learning behaves diftty depending on the initial action-values. The
latter fact makes FAQ a robust choice for many applicationena correct initialization might be impossible.



3.2 Lenient Frequency Adjusted Q-learning

Several ways exist in which leniency can be introduced iraenieg method, as explained in Section 2.2.2.
The most straightforward way to forgive mistakes is to adllgeveral rewards for each action, before per-
forming an update step. This update is then based on thedtighthose collected rewards. The expected
maximum payoff for actior; overx interactions is given by Equations 7 and 8 for both playergs8-
tuting these for the reward matricelsand B in the replicator dynamics leads to the evolutionary model o
Lenient Q-learning [8]:

Aijy; [(Zk:Aq,k.gAU yk)n - (Zk:Aik<A” yk)ﬁ}
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Since Lenient Q-learning inherits the action-value update from Q-learning, its behavior is similarly
influenced by the asynchronous nature of the updates. Ini@ddihe evolutionary model of Lenient Q-
learning is based directly on the evolutionary model of @héng [8]. Therefore, the same discrepancies
between predicted behavior and actual behavior are exghertd may similarly be resolved.

This article proposes the Lenient Frequency Adjusted @ileg (LFAQ) algorithm that combines the
improvements of FAQ and Lenient Q-learning. The actionsgalpdate rule of LFAQ is equal to that of
FAQ; the difference is that the lenient version collectewards before updating its Q-values based on the
highest of those rewards. In addition to the theoreticalarents that carry over from FAQ [5], Section 4.1
provides empirical proof that LFAQ indeed matches the ei@hary model proposed by [8]. This implies
that the newly proposed algorithm inherits the strong gutaes derived from the evolutionary model, i.e.,
the basins of attraction of the Pareto optimal equilibrialsa increased to an arbitrarily large fraction of the
policy space by increasing the degree of leniency.

4 Experiments

This section presents two experiments that demonstrateatigity and advantage of Lenient Frequency
Adjusted Q-learning (LFAQ). First, differences betweemiemt Q-learning and the evolutionary predic-
tion are illustrated, and it is shown that the proposed LFAgahes the evolutionary model significantly
better. Second, the effect of leniency on the basins ofditrafor equilibria with different payoffs is in-
vestigated. This experiment gives an intuition how lenjeincreases the probability of convergence to the
global optimum.

4.1 Validating Lenient Frequency Adjusted Q-learning

This experiment compares the behavior of Lenient Q-legrifirtQ) and Lenient FAQ-learning (LFAQ)
and shows that LFAQ better matches the behavior predicteitsvolutionary model. This is done by
comparing the learners’ policy trajectories with the diiatal field of the replicator dynamics for various
games. As explained in Section 3.2, the policy trajectooiesQ deviate from their expected path in a
way similar to those of Q-learning. LFAQ counters this déeia by introducing an extra term in the value
function update rule that compensates for the frequendywiitich an action is chosen.

In order to be comparable to [5], which investigates thisiatéan for (FA) Q-learning, a similar setup
is used for the experiments. Three games are selected: theliGation Game (CG) and the Stag Hunt
(SH) game with two pure Nash equilibria; and the Matchingri®en(MP) game with one mixed Nash equi-
librium. The results of the Prisoner’s Dilemma which is uged5] are not shown since MP sufficiently
represents the class of competitive games, and lenienspéclly suited to cooperative games. Of partic-
ular interest is the Stag Hunt game, since its two equiliréedifferent in nature. It has one payoff dominant



equilibrium and one risk-dominant equilibrium, and the perative nature of Lenient Q-learning makes it
particularly suited to find this payoff dominant Nash edrilim.

Different initializations of the Q-values result in diffant learning behavior in Q-learning. As LQ is a
direct extension of Q-learning, a similar effect is expdct€herefore, experiments include different initial
values for Q, based on the minimum (pessimistic), mean (aBuand maximum (optimistic) possible Q-
values given the game’s reward space [5].

Figure 2 shows a combination of the RD directional field pltsl the policy trajectories of both LQ
and LFAQ for the three different games and initializatiottings. Both learners use= 0.1, v = 0.9 and
k = 5. A learning rate ofl0—® is chosen in order to obtain predictable behavior, whiclhwie given value
for x relates tan = 5 - 107° for LQ, anda = 5 - 1072 and3 = 103 for LFAQ.

These results show that the behavior of LQ indeed dependwednitial Q-values. This leads to signif-
icant differences in convergence properties of the learfher example, the pessimistic and neutral initial-
ization in the Matching Pennies lead to outward movemenighvactually means moving away from the
equilibrium. In the Stag Hunt and Coordination Game, theneaconverges to either one of the equilibria
depending on the initial settings. LFAQ is more robust; ihdees the same irrespective of the initializa-
tion. In each of the cases LFAQ converges to the game’s Nagifitequm, and in the cooperative games
the learning traces converge to the payoff dominant NashHiledgum. The fact that LFAQ does not quite
reach the equilibrium pointin the Stag Hunt is caused bydh®erature setting; decreasing the temperature
allows the algorithm to reach the equilibrium.

Comparing the learners’ trajectories to the evolutionandsy, it is clear that LQ deviates from the
expected path in most cases, whereas LFAQ shows behavisistemt with the predicted dynamics. The
learners behave most similar to each other with maximurialr@-values. However, in many applications
the rewards are not known in advance, making it impossibtaloulate the maximum Q-value for a game.
LFAQ is a better choice than LQ since its behavior does noeddmn the initialization and is consistent
with the evolutionary prediction.

4.2 An example of lenient convergenceto the global optimum

The main challenge to converge to a Pareto optimal soluticodperative games is mis-coordination, which
may lead to inferior rewards. As long as actions are not sefftty coordinated, the probability of lower
rewards is high and the agent may have more incentive to adgie action. This can be demonstrated using
the example of the Stag Hunt game, where mis-coordinatigh@areto optimum is punished, while the
alternative action yields a mediocre reward that is inddpanof the other agent’s action. Lenient learning
ignores lower rewards and thereby increases the prohatiiltonverging to a Pareto optimal solution.

Figure 3 shows the dynamics of LFAQ in the Stag Hunt game giliferent degrees of leniency. The
highest payoff is achieved by playing the first action witblmbility one. The basin of attraction for the
global optimum grows with the degree of leniency, and in ihmétlconsumes the whole strategy space.
These results illustrate the claim of [8] that “properly-Emient learners are guaranteed to converge to
the Pareto-optimal Nash equilibria in coordination gamdgs’combination with the previous result, this
demonstrates the value of the newly proposed Lenient Freyuadjusted Q-learning algorithm, which
inherits the theoretical guarantees from the evolutionzogel.

5 Discussion and conclusions

The contributions of this article are three-fold: 1. the legnt Frequency Adjusted Q-learning algorithm has
been introduced, 2. it has been compared with Lenient Qnhilegrand its evolutionary model, and 3. the
ability of LFAQ to converge to the Pareto optimal Nash edpilim has been illustrated.

The proposed LFAQ algorithm combines insights from FAQ [5d £Q [8] and inherits the advantages
of both. Empirical comparisons confirm that the LFAQ alduamitis consistent with the evolutionary model
derived by [8], whereas the LQ algorithm may deviate considly. Furthermore, the behavior of LFAQ
is independent of the initialization of the Q-values. Thiglies that it is less prone to problems arising
from premature temperature decrease, which yields simitdacts as skewed initialization, and it is overall
easier to set up. In addition, the behavior of LFAQ is mordrdbte than the behavior of the original LQ
method with respect to the learning trajectories followithally, the probability of converging to a Pareto
optimal equilibrium with LFAQ can be increased arbitraiglpse to one by raising the degree of leniency.
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Figure 2: Overview of the behavior of Lenient Q-learning and LenieAQHearning in different games.
The figure shows different initialization settings for thev@lues: pessimistic (left), neutral (center) and
optimistic (right). The arrows represent the directionaldiplot of the replicator dynamics of Lenient FAQ-
learning.
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The methodology underlying this article demonstrates #laesof evolutionary game theory as a tool
to analyze, understand and design multi-agent learningyitthgns. Future work will provide an empirical
evaluation of the performance of lenient learners agagrseht and non-lenient learners in a variety of
normal form games.
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