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Abstract

Overcoming convergence to suboptimal solutions in cooperative multi-agent games has been a main chal-
lenge in reinforcement learning. The concept of “leniency”has been proposed to be more forgiving for
initial mis-coordination. It has been shown theoreticallythat an arbitrarily high certainty of convergence to
the global optimum can be achieved by increasing the degree of leniency, but the relation of the evolution-
ary game theoretic model to the Lenient Q-learning algorithm relied on the simplifying assumption that all
actions would be updated simultaneously. Building on insights from Frequency Adjusted Q-learning, this
article introduces the variation Lenient Frequency Adjusted Q-learning that matches the theoretical model
precisely, and allows for arbitrarily high convergence to Pareto optimal equilibria in cooperative games.

1 Introduction

Many strategic interactions can be characterized as collaborative, i.e., success primarily depends on the
coordination of actions executed by different agents. Suchcooperative multi-agent games may yield a vast
number of stable but suboptimal solutions, in which either the agents are partitioned into coordinated sub-
groups, or complete coordination on suboptimal joint actions is achieved. Cooperative multi-agent learning
aims to overcome these challenges. However, multi-agent learning is significantly more complex than single-
agent learning, since the presence of other adaptive agentsmakes the environment dynamic, and the optimal
behavior depends on the other agents’ strategies.

Recently, an evolutionary game theoretic approach to multi-agent reinforcement learning has been pro-
posed to facilitate the understanding of multi-agent learning dynamics [1, 10]. This approach replaces
individual rationality from game theory by concepts like selection and mutation from evolutionary biology
to describe the change in a population of candidate strategies. The replicator dynamics that govern the pop-
ulation change have been formally linked to the behavioral change of multi-agent reinforcement learners.

This article demonstrates the strength of the evolutionarygame theoretic approach by introducing a vari-
ation of Q-learning based on insights from evolutionary game theory. Recently, it has been shown that the
introduction of leniency to the evolutionary model of Q-learning improves convergence to Pareto optimal
equilibria in cooperative games [8]. A lenient version of Frequency Adjusted Q-learning [5] is proposed,
which implements this evolutionary model. In addition, thematch between the model and the proposed
learning algorithm is demonstrated empirically, and the almost certain convergence to Pareto optimal equi-
libria with growing degree of leniency is illustrated.

The remainder of this article is structured as follows. Section 2 summarizes the necessary background on
evolutionary game theory and reinforcement learning. The formal link between these two fields is presented
and the proposed Lenient Frequency Adjusted Q-learning algorithm is introduced subsequently in Section 3.
The theoretical arguments are complemented in Section 4 by an empirical study of the new algorithm and
its dynamics. These experiments are discussed in Section 5,which also concludes this article.

2 Background

This section presents a brief overview of evolutionary gametheory and reinforcement learning. For a more
elaborate discussion of these two fields, the interested reader is referred to [4] and [9], respectively.



2.1 Evolutionary game theory

Game theory models the interaction between players as a game, in which each player has a set of actions
to choose from. All players have to select an action simultaneously, upon which they receive a payoff that
depends on the combination of actions played. The goal for each player is to come up with a strategy that
maximizes its payoff in the game. It is assumed that the players are rational, in the sense that each player
tries to maximize its own payoff irrespective of the payoffsof the others [3].

The payoffs can be conveniently represented in the bi-matrix (A, B). A bi-matrix can, just like a normal
matrix, contain any number of rows and columns; “bi” just reflects the fact that each cell contains two
numbers: the payoffs for both players [3]. Suppose the row player plays actioni and the column player plays
j, then the bi-matrix(A, B) gives the payoffsAij to the row player andBij to the column player. Figure 1
presents the payoff bi-matrices of three games that are usedto evaluate the proposed learning method in
this article. The Coordination Game and the Stag Hunt are cooperative games, where both players prefer
the same outcome:(S, S) in the Stag Hunt and(O, O) in the Coordination Game. Matching Pennies is an
example of a competitive game, in which a win for one player isa loss for the other.
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Figure 1: Normalized payoff matrices for the three games considered in this article.

2.1.1 Pareto optimality

An important concept in game theory is the Nash equilibrium (NE). A set of strategies for all players forms
a Nash equilibrium if no single player can do better by playing a different strategy [3]. In the Stag Hunt,
both(S, S) and(H, H) are NE; the Coordination Game has NE(O, O) and(F, F ); and Matching Pennies
has a mixed NE in which both players play actionH with probability 1

2
. The examples of the Stag Hunt

and Coordination Game show that not all NE of a game may be equally preferable. The concept op Pareto
optimality captures this idea: an outcome is Pareto optimalif no other outcome leads to a higher payoff for
at least one payer, without reducing the payoff to any other player [4]. The outcomes(S, S) and(O, O) are
the Pareto optimal NE of the Stag Hunt and the Coordination Game; Matching Pennies has only one NE
which is therefore also Pareto optimal.

2.1.2 Replicator dynamics

Classical game theory assumes that full information is available to the player, which together with the as-
sumption of hyper-rationality does not reflect the dynamical nature of most real world environments [4].
Evolutionary Game Theory (EGT) was developed to overcome this limitation, by adopting the idea of evo-
lution from biology to describe how players can learn to optimize their strategy without requiring complete
information [6]. The theory provides a solid basis to study the decision making process of boundedly rational
players in an uncertain environment.

Central to evolutionary game theory are the replicator dynamics, that describe how a population of
candidate strategies evolves over time. Supposing that each player is represented by a population consisting
of pure strategies, the fact that a player plays actionA with probabilityp can be translated as a fractionp of
the population playing pure strategyA. In a 2-player game, the process of change over time in the frequency
distribution of the candidate strategies is described by

dxi

dt
= xi[(Ay)i − xT Ay] (1)

dyi

dt
= yi[(Bx)i − yT Bx] (2)

wherex (y) is the frequency distribution for player 1 (2), andA (B) represents its individual payoff matrix.
These equations are the replicator dynamics that constitute the link between EGT and RL.



2.2 Reinforcement learning

A reinforcement learning agent has to learn by trial-and-error interaction with its environment. It has no
explicit knowledge on how to achieve its goal, it can only perceive the results of its actions by means of
punishment and reward. The agent’s goal is to maximize its reward over time by learning what the best
action is in each situation. This article considers single-state reinforcement learning. Each time step the
agent performs an actioni upon which it receives a rewardri ∈ [0, 1]. Based on this reward the agent
updates its policy which is defined as a probability distribution over its actionsx, wherexi denotes the
probability of selecting actioni. The way in which the policy is updated is specific to each reinforcement
learning algorithm.

A distinction has to be made between single-agent and multi-agent RL. Whereas in single-agent envi-
ronments the Markov property may be assumed, multi-agent environments are inherently non-stationary,
and as a result proofs of convergence that hold for the single-agent case are no longer valid. Nevertheless,
single-agent RL algorithms have been shown empirically to produce good results in multi-agent settings as
well [2]. This article considers a variation of the Q-learning algorithm, which is introduced below.

2.2.1 Q-learning

Q-learning is an off-policy reinforcement learning methodbased on the idea of temporal difference (TD)
learning [12]. TD methods generally consist of two steps: policy evaluation and policy iteration. The first
step estimates a value functionQ, that is then used in the second step to update the policyx. Q-learning
differs from on-policy TD methods in that it approximates the true action-value functionQ∗ independent of
the policy being followed [9]. Single-state Q-learning uses the action-value update function

Qi(t + 1)← Qi(t) + α

[

ri(t + 1) + γ max
j

Qj(t)−Qi(t)

]

(3)

to refineQ at every time step, wherei is the action taken at timet, α controls the learning step size,
andγ discounts future rewards. Only the value of the selected action is updated; for all other actionsj,
Qj(t + 1) ← Qj(t). The policy plays no role in this update process; it is only used to determine which
action is selected. Instead, the action-value update is based purely on the reward received and the expected
value of the next iteration, expressed by the termγ maxj Qj(t). After each update ofQ, the new optimal
policy is derived using the Boltzmann exploration mechanism that converts the action-value functionQ to
the probability distributionx, using a temperature parameterτ to control the balance between exploration
and exploitation:

xi =
eQi·τ

−1

∑

j eQj ·τ−1
(4)

A high temperature drives the mechanism towards exploration by leveling the action probabilities, whereas
a low temperature promotes exploitation by favoring actions with a highQ-value. Q-learning is proven to
converge to the true action-value functionQ∗ in a Markovian environment, given that each action is selected
(and its action-value is updated) an infinite number of times[12].

2.2.2 Lenient Q-learning

Lenient Q-learning is a learning method specifically tailored to cooperative multi-agent environments. When
multiple independent agents learn together in such an environment, it can often happen that they converge
to suboptimal solutions whereas a single agent might have nodifficulty at all in finding the optimum. One
of the reasons is that the environment is unpredictable, since actions taken by other agents influence the
rewards received. Initial mis-coordination on a Pareto optimal solution may result in severe punishment,
and as a result the Q-value of the Pareto optimal action may decrease. In the end, this can drive the agents
away from the Pareto optimum, resulting in suboptimal behavior. This effect can be reduced by introducing
leniency, i.e., by ignoring initial mis-coordination. It has been shown that leniency can greatly improve the
accuracy of an agent’s projection of the search space in the beginning of the learning process [7]. It thereby
overcomes the problem that initial mis-coordination mightlead to suboptimal solutions in the long run.

Leniency towards others can be achieved by having the agent ignore some low rewards and only consider
the highest of several samples. For example, the agent mightalways update its policy when an action yields
a higher reward than expected. When the reward is lower, it chooses probabilistically: in the beginning it



should show more lenience towards its teammates and ignore more low rewards, whereas in the end it might
be more critical and always update its policy. A simpler approach is to have the agent collectκ rewards for
a single action before it updates the value of this action based on the highest of thoseκ rewards [8]. This
results in a fixed degree of leniency, expressed by the value of κ.

3 Connecting evolutionary game theory and reinforcement learning

The relation between reinforcement learning and evolutionary game theory was first formalized by [1], who
proved that the continuous time limit of Cross learning, a specific reinforcement learning method, converges
to the replicator dynamics. Recently, evolutionary dynamical models of Q-learning and Lenient Q-learning
have been developed with the intention to provide a more intuitive way to understand the behavior of re-
inforcement learning [11, 8]. However, these two models usethe simplifying assumption that all actions
would be updated at each iteration. This leads to a discrepancy between the predicted and actual learning
behavior. For Q-learning, this difference has been resolved by the variation Frequency Adjusted Q-learning
(FAQ), which inherits the preferable behavior of the evolutionary model [5]. Combining the insights from
leniency and frequency adjustment, a lenient version of theFAQ algorithm, called Lenient Frequency Ad-
justed Q-learning (LFAQ), is proposed that adheres to the predictions of the evolutionary model of Lenient
Q-learning in the same way that FAQ adheres to the model of Q-learning.

3.1 Frequency Adjusted Q-learning

Differences between the actual behavior of reinforcement learning and the evolutionary model have been
observed. It is known that such differences can occur when the step size of the learning is large [1]. However,
the discrepancies observed in Q-learning may remain when the step size is decreased [5]. The evolutionary
model was derived under the assumption that all actions are updated equally often [11], but the action-
values in Q-learning are updated asynchronously: the valueof an action is only updated when it is selected.
If synchronous updates incur a change of∆Qi, then asynchronous updates incur a change ofxi∆Qi, where
xi is the probability of selecting actioni. Due to the simplifying assumption, the derivative of the action-
value update function used in the evolutionary model of Q-learning differs by a factorxi from the actual
Q-learning behavior. It is further argued that the evolutionary model predicts more rational behavior than
the Q-learning algorithm actually exhibits, and therefore[5] introduce the variation Frequency Adjusted
Q-learning (FAQ) that perfectly fits the evolutionary model. The action-value update is weighted inversely
proportional to the probability with which the action is selected, thereby simulating synchronous updates:

Qi(t + 1)← Qi(t) +
1

xi

α

[

r(t + 1) + γ max
j

Qj(t)−Qi(t)

]

(5)

However, this function is only valid in the infinitesimal limit of α, as otherwise the fractionα/xi may
become larger than 1. This would violate the assumptions under which the algorithm converges [12]. In
order for the method to be numerically applicable, the authors define a generalized version of the frequency
adjusted Q-learning method, by introducing a variableβ ∈ [0, 1):

Qi(t + 1)← Qi(t) + min

(

β

xi

, 1

)

α

[

r(t + 1) + γ max
j

Qj(t)−Qi(t)

]

(6)

Whenβ = 1, FAQ reduces to normal Q-learning; therefore this value is excluded from the allowed range
of β. It is shown that the value ofβ controls the area of the policy space for which FAQ is valid [5]. If
xi ≥ β, FAQ behaves according to the evolutionary dynamics; ifxi < β, FAQ behaves equivalent to regular
Q-learning. Given the range of possible rewards and a specific temperatureτ , the most extreme policy that
may arise can be computed using the Boltzmann policy generating function. Hence, a temperatureτ can
be selected according toβ, such thatxi ≥ β is guaranteed in FAQ-learning, and thus the algorithm always
behaves according to the evolutionary model. Theoretically, this means that the range ofβ can be further
narrowed, since it reduces the policy space from both sides:0 < β < 1

2
. Practically,β should be chosen as

small as possible to ensure the validity of FAQ for a large part of the policy space.
The behavior of FAQ has been shown to match the evolutionary model that was originally designed for

Q-learning, whereas Q-learning itself deviates from it [5]. Furthermore, FAQ is less sensitive to the initial-
ization of the Q-values, whereas Q-learning behaves differently depending on the initial action-values. The
latter fact makes FAQ a robust choice for many applications where correct initialization might be impossible.



3.2 Lenient Frequency Adjusted Q-learning

Several ways exist in which leniency can be introduced in a learning method, as explained in Section 2.2.2.
The most straightforward way to forgive mistakes is to collect several rewards for each action, before per-
forming an update step. This update is then based on the highest of those collected rewards. The expected
maximum payoff for actionai overκ interactions is given by Equations 7 and 8 for both players. Substi-
tuting these for the reward matricesA andB in the replicator dynamics leads to the evolutionary model of
Lenient Q-learning [8]:

ui =
∑

j

Aijyj

[(

∑

k:Aik≤Aij
yk

)κ

−

(

∑

k:Aik<Aij
yk

)κ]

∑

k:Aik=Aij
yk

(7)

wi =
∑

j

Bjixj

[(

∑

k:Bki≤Bji
xk

)κ

−

(

∑

k:Bki<Bji
xk

)κ]

∑

k:Bki=Bji
xk

(8)

dxi

dt
=

αxi

τ
(ui − xT u) + xiα

∑

j

xj ln(
xj

xi

) (9)

dyi

dt
=

αyi

τ
(wi − yT w) + yiα

∑

j

yjln(
yj

yi

) (10)

Since Lenient Q-learning inherits the action-value updaterule from Q-learning, its behavior is similarly
influenced by the asynchronous nature of the updates. In addition, the evolutionary model of Lenient Q-
learning is based directly on the evolutionary model of Q-learning [8]. Therefore, the same discrepancies
between predicted behavior and actual behavior are expected, and may similarly be resolved.

This article proposes the Lenient Frequency Adjusted Q-learning (LFAQ) algorithm that combines the
improvements of FAQ and Lenient Q-learning. The action-value update rule of LFAQ is equal to that of
FAQ; the difference is that the lenient version collectsκ rewards before updating its Q-values based on the
highest of those rewards. In addition to the theoretical arguments that carry over from FAQ [5], Section 4.1
provides empirical proof that LFAQ indeed matches the evolutionary model proposed by [8]. This implies
that the newly proposed algorithm inherits the strong guarantees derived from the evolutionary model, i.e.,
the basins of attraction of the Pareto optimal equilibria can be increased to an arbitrarily large fraction of the
policy space by increasing the degree of leniency.

4 Experiments

This section presents two experiments that demonstrate thevalidity and advantage of Lenient Frequency
Adjusted Q-learning (LFAQ). First, differences between Lenient Q-learning and the evolutionary predic-
tion are illustrated, and it is shown that the proposed LFAQ matches the evolutionary model significantly
better. Second, the effect of leniency on the basins of attraction for equilibria with different payoffs is in-
vestigated. This experiment gives an intuition how leniency increases the probability of convergence to the
global optimum.

4.1 Validating Lenient Frequency Adjusted Q-learning

This experiment compares the behavior of Lenient Q-learning (LQ) and Lenient FAQ-learning (LFAQ)
and shows that LFAQ better matches the behavior predicted byits evolutionary model. This is done by
comparing the learners’ policy trajectories with the directional field of the replicator dynamics for various
games. As explained in Section 3.2, the policy trajectoriesof LQ deviate from their expected path in a
way similar to those of Q-learning. LFAQ counters this deviation by introducing an extra term in the value
function update rule that compensates for the frequency with which an action is chosen.

In order to be comparable to [5], which investigates this deviation for (FA) Q-learning, a similar setup
is used for the experiments. Three games are selected: the Coordination Game (CG) and the Stag Hunt
(SH) game with two pure Nash equilibria; and the Matching Pennies (MP) game with one mixed Nash equi-
librium. The results of the Prisoner’s Dilemma which is usedin [5] are not shown since MP sufficiently
represents the class of competitive games, and leniency is especially suited to cooperative games. Of partic-
ular interest is the Stag Hunt game, since its two equilibriaare different in nature. It has one payoff dominant



equilibrium and one risk-dominant equilibrium, and the cooperative nature of Lenient Q-learning makes it
particularly suited to find this payoff dominant Nash equilibrium.

Different initializations of the Q-values result in different learning behavior in Q-learning. As LQ is a
direct extension of Q-learning, a similar effect is expected. Therefore, experiments include different initial
values for Q, based on the minimum (pessimistic), mean (neutral), and maximum (optimistic) possible Q-
values given the game’s reward space [5].

Figure 2 shows a combination of the RD directional field plotsand the policy trajectories of both LQ
and LFAQ for the three different games and initialization settings. Both learners useτ = 0.1, γ = 0.9 and
κ = 5. A learning rate of10−5 is chosen in order to obtain predictable behavior, which with the given value
for κ relates toα = 5 · 10−5 for LQ, andα = 5 · 10−2 andβ = 10−3 for LFAQ.

These results show that the behavior of LQ indeed depends on the initial Q-values. This leads to signif-
icant differences in convergence properties of the learner. For example, the pessimistic and neutral initial-
ization in the Matching Pennies lead to outward movement, which actually means moving away from the
equilibrium. In the Stag Hunt and Coordination Game, the learner converges to either one of the equilibria
depending on the initial settings. LFAQ is more robust; it behaves the same irrespective of the initializa-
tion. In each of the cases LFAQ converges to the game’s Nash equilibrium, and in the cooperative games
the learning traces converge to the payoff dominant Nash equilibrium. The fact that LFAQ does not quite
reach the equilibrium point in the Stag Hunt is caused by the temperature setting; decreasing the temperature
allows the algorithm to reach the equilibrium.

Comparing the learners’ trajectories to the evolutionary model, it is clear that LQ deviates from the
expected path in most cases, whereas LFAQ shows behavior consistent with the predicted dynamics. The
learners behave most similar to each other with maximum initial Q-values. However, in many applications
the rewards are not known in advance, making it impossible tocalculate the maximum Q-value for a game.
LFAQ is a better choice than LQ since its behavior does not depend on the initialization and is consistent
with the evolutionary prediction.

4.2 An example of lenient convergence to the global optimum

The main challenge to converge to a Pareto optimal solution in cooperative games is mis-coordination, which
may lead to inferior rewards. As long as actions are not sufficiently coordinated, the probability of lower
rewards is high and the agent may have more incentive to adopta safe action. This can be demonstrated using
the example of the Stag Hunt game, where mis-coordination onthe Pareto optimum is punished, while the
alternative action yields a mediocre reward that is independent of the other agent’s action. Lenient learning
ignores lower rewards and thereby increases the probability of converging to a Pareto optimal solution.

Figure 3 shows the dynamics of LFAQ in the Stag Hunt game givendifferent degrees of leniency. The
highest payoff is achieved by playing the first action with probability one. The basin of attraction for the
global optimum grows with the degree of leniency, and in the limit consumes the whole strategy space.
These results illustrate the claim of [8] that “properly-set lenient learners are guaranteed to converge to
the Pareto-optimal Nash equilibria in coordination games”. In combination with the previous result, this
demonstrates the value of the newly proposed Lenient Frequency Adjusted Q-learning algorithm, which
inherits the theoretical guarantees from the evolutionarymodel.

5 Discussion and conclusions

The contributions of this article are three-fold: 1. the Lenient Frequency Adjusted Q-learning algorithm has
been introduced, 2. it has been compared with Lenient Q-learning and its evolutionary model, and 3. the
ability of LFAQ to converge to the Pareto optimal Nash equilibrium has been illustrated.

The proposed LFAQ algorithm combines insights from FAQ [5] and LQ [8] and inherits the advantages
of both. Empirical comparisons confirm that the LFAQ algorithm is consistent with the evolutionary model
derived by [8], whereas the LQ algorithm may deviate considerably. Furthermore, the behavior of LFAQ
is independent of the initialization of the Q-values. This implies that it is less prone to problems arising
from premature temperature decrease, which yields similarartifacts as skewed initialization, and it is overall
easier to set up. In addition, the behavior of LFAQ is more desirable than the behavior of the original LQ
method with respect to the learning trajectories followed.Finally, the probability of converging to a Pareto
optimal equilibrium with LFAQ can be increased arbitrarilyclose to one by raising the degree of leniency.



Coordination Game, equilibrium(0, 0); Pareto optimal equilibrium(1, 1)
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Stag Hunt Game, payoff dominant eq.(1, 1); risk dominant eq.(0, 0)
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Figure 2: Overview of the behavior of Lenient Q-learning and Lenient FAQ-learning in different games.
The figure shows different initialization settings for the Q-values: pessimistic (left), neutral (center) and
optimistic (right). The arrows represent the directional field plot of the replicator dynamics of Lenient FAQ-
learning.
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Figure 3: Lenient Frequency Adjusted Q-learning in the Stag Hunt gamewith varying degree of leniency.
The line indicates the border between the two basins of attraction for the risk dominant equilibrium at(0, 0)
and the payoff dominant equilibrium at(1, 1).

The methodology underlying this article demonstrates the value of evolutionary game theory as a tool
to analyze, understand and design multi-agent learning algorithms. Future work will provide an empirical
evaluation of the performance of lenient learners against lenient and non-lenient learners in a variety of
normal form games.
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