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ABSTRACT
The field of multiagent decision making is extending its
tools from classical game theory by embracing reinforcement
learning, statistical analysis, and opponent modeling. For
example, behavioral economists conclude from experimen-
tal results that people act according to levels of reasoning
that form a “cognitive hierarchy” of strategies, rather than
merely following the hyper-rational Nash equilibrium solu-
tion concept. This paper expands this model of the iterative
reasoning process by widening the notion of a level within
the hierarchy from one single strategy to a distribution over
strategies, leading to a more general framework of multi-
agent decision making. It provides a measure of sophistica-
tion for strategies and can serve as a guide for designing good
strategies for multiagent games, drawing it’s main strength
from predicting opponent strategies.

We apply these lessons to the recently introduced
Lemonade-stand Game, a simple setting that includes both
collaborative and competitive elements, where an agent’s
score is critically dependent on its responsiveness to oppo-
nent behavior. The opening moves are significant to the end
result and simple heuristics have achieved faster cooperation
than intricate learning schemes. Using results from the past
two real-world tournaments, we show how the submitted en-
tries fit naturally into our model and explain why the top
agents were successful.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

Keywords
Iterated reasoning, cognitive models, multiagent systems,
POMDPs, repeated games

1. INTRODUCTION
In many domains where multiple strategic actors are

present, it is becoming increasingly common to find com-
puter programs in place of human decision-makers. Algo-
rithmic trading [14], automated ad auctions [12], and bot-
nets [7] are just a few examples of the multiagent problem
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that have emerged over the past decade. The key challenge
of such settings is the deliberate unpredictability of other
adaptive agents that can prevent the formation of reliable
responses. On the other hand, if others are trying to predict
us, there is an opportunity to discover the pattern by which
they attempt to do so. Multiagent learning has been moti-
vated by successes in machine learning and several branches
of economics to answer the question of how computer agents
should make decisions when multiple decision makers are
present that may not have the same goals or incentives [13].
The task at hand is actually two separate but related tasks:
to predict the behavior of other unknown players, and to
respond in turn. Unlike the single agent case, here agent de-
signers need to recognize that other modelers are changing
and attempting to anticipate their agent’s actions.

One popular approach to building intelligent agents is to
apply reinforcement-learning techniques adapted from sin-
gle agent environments. Often, for learning to make speedy
progress, algorithm designers rely on assumptions about op-
ponents that are not always explicit, and we would like to
have a way to explore them and understand how they arise
as they do. We might notice that multiagent learning in
multiple round games raises similar questions to those of
reinforcement learning. Players need to learn how to act in
the long-run, how to escape from undesirable locally optimal
outcomes, and they need to learn quickly. One difference is
that the issue of time can have a big impact on the eventual
result of a game with multiple agents, while learners in fixed
single-agent environments will typically reach the same pol-
icy regardless of the pace of experience. For example, in a
game where two players get a high reward for cooperating
with each other at the expense of a third, it pays off to be
one of the first two cooperators—the third agent may never
achieve high reward.

Another option is to model opponent behavior directly, by
using recursive modeling [10], Interactive POMDPs [9], or
Networks of Influence Diagrams [8]. The famous RoShamBo
game is one domain where recursive reasoning has demon-
strated its relevance and applicability [1, 6]. The obstacle
that disrupts progress in this area is that modeling can go on
endlessly, as an agent forms ever more complicated models
using simpler models as parts, often in a rather unstruc-
tured way. Behavioral economists address very similar is-
sues from a slightly different angle. Using experiments on
humans playing games, they have found a great deal of evi-
dence that people use strategic reasoning to make decisions,
but only up to a point. Indeed, this reasoning conforms to a
well-defined cognitive hierarchy, or a related level-k model,
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composed of levels of thinking [2]. This model can apply to
games with two agents or larger population games.

One limitation of previous iterated best response models
is that there is a tendency to pick an exact strategy to rep-
resent each level. Assuming that agents can be classified as
one of a few ideal types is one option for modeling opponents,
but does not capture the aspect that players can belong to
multiple types. We address the opponent model selection
problem by allowing for a distribution of agents to represent
each level. The appeal of using distributions is that uncer-
tainty over opponents leads to multiple best responses, and
sometimes there is no principled way to choose from among
them. We can use this feature to cover uncertainties about
implementations or simplified approximate versions of opti-
mal strategies, which play a role in bounded reasoning mod-
els. Our enriched model, called a Parameterized I-POMDP,
highlights to the user the most important strategies of the
game, and identifies their relationships. Given a feasible un-
known strategy to test, the framework allows us to directly
measure the amount of reasoning that lies behind it by com-
paring it to constructed strategies derived from a thorough
reasoning process.

To illustrate this process, we utilize the recently intro-
duced Lemonade-stand Game (LG) as an example setting
where playing one’s opponents is more important than play-
ing the game. LG is played by three players, which is more
complicated than the simplest 2-player case, but still small
enough where the pairwise interactions are major factors.
This simple game leads to an elegant analysis, even with
the complications of triadic interaction. The main message
of our framework is that learning agents can use a number
of ways to plan against opponents, but in the end success
depends mostly on the distribution of types in the popu-
lation. The model guides theoretical analysis of the game
and its application is demonstrated with actual agents from
competitions. Such competitions have a history of focus-
ing researchers on important issues and providing a wide
selection of approaches that can be mined for data. This
method of mining data to discover aspects of the underlying
reasoning model is an exciting emerging branch of computer
science [15, 16].

The next section, 2, provides more detail about existing
models in both computer science and economics. In Sec-
tion 3, we introduce our proposed extension to those earlier
models. Section 4 explains the LG. Section 5 applies our
framework to LG and derives the resulting levels, resulting in
a hierarchy over the space of reasonable strategies. Section 6
uses previous tournament submissions as evidence that the
new model works in some interesting types of games.

2. BACKGROUND
The cognitive hierarchy model (CH) [3] and its cousin,

level-k thinking [4], have been used by behavioral economists
to explain observed human behavior. CH consists of an ini-
tial level of base strategies combined with a series of levels
found by repeatedly taking the best response of lower lev-
els. The level-k model operates by responding to just level
k−1 instead of levels 0, ..., k−1. In these investigations, the
games are generally simple enough that it is straightfoward
to construct the hierarchy. Experimental data then provides
knowledge about the frequencies of the various levels, and
therefore properties like the average level in a population.
CHs are useful in population games or 2-agent games alike,

but usually they consist of one-shot experiments, obviating
the need to build complex sequential models at each level.
While we will primarily consider games played through com-
puter agents and not directly by people, the same underlying
process is present in both systems.

From the computer-science or machine-learning perspec-
tive, this setting has been formalized as an Interactive Par-
tially Observable Markov Decision Process, or I-POMDP.
This development synthesizes the considerable work done
on single agent POMDPs with multiagent approaches such
as the Recursive Modeling Method (RMM) [11]. This for-
mulation is ideal for sequential or repeated games where
unknown opponents have limited reasoning capabilities.

POMDPs are similar to the standard Markov Decision
Process except it is not assumed that an agent knows what
state it is currently in. A solver must use observations to in-
fer the likely state by updating beliefs over the state space.
An I-POMDP is a POMDP that has interactive states in
place of states, and joint actions in place of actions [9]. This
interactive state is the cross product of environmental states
and internal states of agents present in the game. The inter-
active state space is constructed recursively starting where
other agents are represented strictly as a stochastic part of
the state. In other words, in the simplest interactive state
other agents are assumed to have no reasoning capacity or
sensitivity to payoffs, but instead exist as a noisy component
of the environment. Then, we build more advanced interac-
tive states in new I-POMDPs to represent further or higher
opponent reasoning. We can use this technique to reach any
level of sophistication that can be reasonably computed, but
in practice only a finite number of nested levels are used.

Associate I-POMDPi with agent i and the only other
agent is j. The definition generalizes to more agents. An
I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉 has the following fea-
tures:

• ISi is the set of interactive states ISi = S × πj where
S is the set of states from the environment and πj is
the set of policies for agent j.

• A is the set of joint actions Ai ×Aj .
• Ti is the transition function Ti : S × A × S → [0, 1].

The transition model, along with the internal decisions
for policy πj , determine the next interactive state, but
we assume that agent i does not directly control other
agents in its environment.

• Ωi is the set of observations.

• Oi is the observation function Oi : S ×A×Ω→ [0, 1].

• Ri is the reward function Ri : ISi ×A→ R.

Policies at each level k are derived from the beliefs bj,k−1

over the policies and states of the previous level k−1. Define
the following spaces.

• IS0
i = S, π0

j = IS0
i → Aj ∈ H0

• IS1
i = IS0

i × π0
j , π1

j = bj,1(IS1
i )→ Aj ∈ H1

.

.

.

• ISLi = ISL−1
i × πL−1

j , πLj = bj,L(ISLi )→ Aj ∈ HL
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The strength of this formalism is that it suggests a rel-
atively general algorithm for computing policies and works
well with good initial beliefs. A weakness is that the set of
opponent policies to include is unspecified and therefore the
solution breaks down when those beliefs do not match real-
ity. We attempt to mitigate this flaw by keeping a range of
solutions to represent our initial uncertainty. The framework
also has the advantage that the solver has some flexibility in
selecting the planning problem to attack, which could allow
it to select simpler to reduce the computationally demands.
Currently there is no predescribed way to achieve this aim,
but it is another goal for our extended model.

3. PARAMETERIZED I-POMDPS
Our framework, entitled Parameterized Interactive Par-

tially Observable Markov Decision Processes (PI-POMDPs)
is a model for recursively deriving a set of policies that re-
spond to less advanced policies for use in highly structured
domains. We extend the I-POMDP framework by building
an entire profile of policies at each nested level in place of a
single solution. Instead of a single policy, the solution will
be the hierarchy of policies computed at each level.

Define for agent i rule-based policy H : IS → Ai to be
a basic rule that maps states to actions. One example of a
rule would be Ati = At−1

i , signifying constant action. Then,
a parameterized policy π : R → H maps real vector X ∈
[0, 1] to some rule. X could indeed be used to represent any
adjustable feature of an agent, but we will assume that Xr
is the probability of playing rule Hr. Note the rule is not
fixed for the whole game, but rechosen every time step.

The parameterization of policies begins right away when
deciding which beliefs over initial strategies to start with.
There may be several options that incorporate the idea of
non-reasoning policies, so we end up with π0(X) for agents
at level 0 to weight each tactic. In turn, following the I-
POMDP mechanism, the πj(X)s for each agent j and value
X are used to construct an instance of a POMDP problem.
Instead of optimizing over all X to arrive at a single pol-
icy, compute a range of policies as X changes. If possible,
we will attempt to condense all of these rules into a single
new parameterized policy π1 with as few input dimensions
as possible, to represent the result of a step of reasoning
over level 0. This way, we do not have to make the decision
about which strategies are valid for the next level derivation.
All of them are kept as a part of the final model. While it
is possible for games to take place in states in the environ-
ment, we will consider the partial observability to consist of
uncertainty over the parameterized policies present in the
agent’s population.

4. LEMONADE-STAND GAME
Recently, the Lemonade-stand Game was introduced to

demonstrate the interaction complexity that can arise in a
game from simple rules [17]. The game is played by three
lemonade vendors on a circular island with n beaches, where
typically n = 12, arranged like the numbers on a clock.
Each morning, the vendors have to set up on one of the
beaches, not knowing where the other vendors will show up.
Assuming the beach visitors are uniformly distributed and
buy their lemonade from the closest vendor, the payoff for
the day is equal to the distance to the neighboring lemon-
ade vendors. For convenience denote D(Ai, Aj) the distance
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Figure 1: This figure depicts key strategic patterns
of the lemonade game. Each of the six diagrams
refers to a (partial) joint action, and similarly a
strategic move by , expecting opponents to play

and . As the domain is on a ring, the patterns
are rotation insensitive.

function between agents i and j on the side with no other
agent in between. Then, Rt0 =

∑2
j=1D(At0, A

t
j).

In game-theoretic terms, LG is a 12-action normal form
game on a ring, where the payoff function equals the sum
of distances to the right and left neighboring vendor. As a
corollary, the cumulative payoff of the three players is 24.
The only exceptional formations are when multiple agents
conflict by choosing the same action (Collision). If two ven-
dors choose the same action, they receive a reward of 6 and
create the most favorable condition for the third agent who
receives the maximum of 12. If all three vendors choose the
same action, each receives 8. There is no special property
about any of the 12 locations on Lemonade Island. The
game is played repeatedly for T days and the joint action is
observable. T is set to 100 so that agents can learn about
the opponents’ behavior from previous rounds.

The dynamics of this game are particularly interesting
because it involves a sense of competition, as the gains of
one always have to be compensated by the loss of others,
as well as a sense of cooperation, because two agents can
coordinate a joint attack on the third. Figure 1 shows an
overview of the key strategic patterns in the LG. Each agent
has to choose an action, and the simplest move is to stick
with the initial action from then on (Stick). The Equilateral
pattern splits the payoff evenly into 8 for each agent, but
from worst case perspective is dominated by the cooperative
action Across. Once two agents coordinate on the action
Across, they will share 18, relegating the third agent to 6
regardless of the action it chooses. As an illustration of its
simplicity, must only find a predictable player and use
the action opposite to it. can be completely oblivious as
long as it is predictable (say, a pure Stick player).

If an agent finds its opponents in a consistent Across pat-
tern, it will lose unless it can entice at least one opponent
to break formation. In a simple form illustrated in Figure
1, bottom right, can alternate between using the same ac-

tion as and an action halfway between and . will
get the same utility whether it is Across from or during
the Reward phase of , but would choose Across from if it
wants to avoid low utility during its looming Punish phase,
essentially switching partners.
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5. LEVELS OF REASONING IN LG
The Lemonade-stand game is an ideal example of com-

petitive collaboration. That is, a player able to convince
another player to cooperate with it can achieve a higher
average score to the disadvantage of the third player. Of
course, each player has to choose the “friendlier” player to
cooperate with, with the knowledge that any attempts may
be tracked by the other players. Ultimately, the two players
who work together best will achieve the highest scores.

It appears that players have many repeated turns for ob-
servation and experimenting. In reality many matches are
settled in the first several rounds, as agents seek partners and
mutual history is established. Cooperation, however it is de-
fined, is self-reinforcing. Therefore, strategies in this game
put a premium on speed over data collection when finding
optimal actions. This property means that traditional learn-
ing methods, like gradient ascent or regret matching tend to
be outperformed by very simple rules. Because there are
many possible Nash equilibria in the game, it is also un-
clear which ones are optimal and how to reach them. Our
aim is a model that can explain such phenomena and yield
strategies that at least outperform the simplest heuristics.
An alternative approach [5] to this game identifies a stable
equilibrium and classifies agents as leaders or followers ac-
cording to who initiates the equilibrium pattern. While this
strategy works in some scenarios, in some cases it is possible
to identify several levels of leading and following. It also
makes no judgments about whether one is superior to the
other, or how one might measure that performance.

5.1 Long-run Optimal Behavior
LG translates into our PI-POMDP model, with several

simplifications. In this case, Ω ∈ A, so that O : IS×A×A→
[0, 1]. In addition, there is only one state in the environment,
which means there are only pseudo-states depending on the
agents’ behavior that is conditioned on the current At.

• ISi is the set of interactive states ISi = S × πj where
S is the set of states from the environment and πj is
the set of policies for agent j.

• S is defined by the time step in the finite horizon case.

• Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.
• HStick: A basic action type that repeats the same ac-

tion as the last turn

• HUniform: Play a random action.

• π0
j (X0) = a ∈ {Hstick, Huniform}

s.t. P (a = Hstick) = X0, P (a = Huniform) = 1−X0.

• Ωi is equivalent to
⋃
Aj∀j .

• Oi is determined by the policy of the opposite agent.

• Ri is the sum of distances to the players on either side.

To analyze this game rigorously using a PI-POMDP, we
begin like most iterated reasoning models with a base level
of non-reasoners, called Level 0 or L0. Analogously to an in-
ductive proof, L0 forms the basis for the rest of the hierarchy.
First, these base strategies are defined, and subsequently,
the higher layers can be constructed by iteratively applying
the reasoning step. Here, we define a step of reasoning to be

a policy that maximizes the score against either a distribu-
tion over previous levels, or a selection of agents from those
levels, by solving the POMDP formed by them. To avoid
losing information, a parameterized policy (responding to a
previous distribution of lower-level policies) represents the
next level.

In many games, a base strategy of a single uniform distri-
bution over all actions suffices: HUniform

j . In repeated games
like LG, there exists another trivial action Stick, which leads
to the basic notion of sticky strategies. Stickiness, as mea-
sured by the likelihood that a player remains in place, plays
an important role in this game because it makes action pre-
diction simple. As such, the rule HStick

j : Atj = At−1
j de-

serves a place among base strategies. In typical constant-
sum games, a non-changing strategy is easy to defeat. In
LG it is a powerful strategy on its own, as it forces other
players to take action beneficial to the sticky player, such as
to move away from it.

We take the general π0
j (X) base level L0 to be composed

of HUniform
j and HStick

j , with a single real parameter X0 to
control the relative frequency of each. Consider the two op-
ponents to be named Bk and Ck, where k is the amount of
reasoning the agent’s strategy contains. The solving agent’s
perspective is denoted agent I. The L0 strategy for B0 is
defined by an initial random action and the probability X0

to Stick with the previous action in the following turns, or
otherwise pick a new random action. Y0 is the corresponding
value for agent C0. For π0

j (0) = HUniform
j or π0

j (1) = HStick
j ,

L0 takes the form of a uniformly random (L0-U) or constant
strategy (L0-C) respectively. We refer to this policy π0

j as

πSemi-random
j (X). Define X̂ as the current estimate of X for

an opponent B0, and Ŷ as the estimate of Y for opponent
C0, signifying the same strategy. In other words, given a
sequence of observations from two unknown strategies im-
plementing π0 with values X and Y, we must make statistical
conclusions about those values given our experience. We are
then faced with finding a long-run strategy given observa-
tions X̂ and Ŷ . Although a POMDP solver could be utilized
to simulate the reasoning, here proofs are presented because
the steps are very open to analysis.

Theorem 1. The optimal L1 strategy for agent I1, π1
I , is

to maximize the distance D from the other two agents, giv-
ing HBetween-across

I = WBAcross(AB) + WCAcross(AC) where

WB = X(1−Y )
X(1−Y )+Y (1−X)

and WC = 1 −WB are weights that

determine how much HBetween-across
I should favor each of the

Across actions. This strategy will prefer to be Across from
the player who Sticks more often.

Proof. Since L0 agents do not respond to the actions of
agent I1, the POMDP reduces to a simple MDP. That is,
action AI has no effect on the transitions of the opponents,
so the best action is found by calculating the expected utility
of each spot, given X, Y , and the current placement of B0

and C0. If C0 Sticks at location 0 and B0 is random over all
locations, the expected value of action a for a > 0 is:

V (a) =
6

12
+

12

12
+

max(0, a− 1)

12

(
12− a

2

)
+

11− a
12

(
6 +

a

2

)
.

The first term is the event that B0 lands on I1. The second
term is the event that B0 lands on C0. The third term is
the event that B0 lands in the short distance between C0

and I0, and the fourth term is the event of landing on the
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large distance side. Taking the derivative, we then find that
(when n > 0)

V (a) = 6 + a− a2

12

V ′(a) = 1− a

6
= 0

a = 6.

The optimal action is 6, directly across from 0, where the

expected value is V (a) = 6+6− 62

12
= 12−3 = 9. All actions

on the far side of B0 and C0 have the same value when both
players Stick or act uniformly, so we just care about the case
when one of the two switches. Assume that B0 is at 0 and
C0 is DBC spaces away clockwise, where DBC ≤ 6 w.l.o.g.
The value of action a when C0 Sticks and B0 is random is

V (a) = 6 + a−DBC − (a−DBC)2

12

V ′(a) = 1− a−DBC
6

.

Therefore, the marginal value when B0 Sticks with proba-
bility X and C0 Sticks with probability Y is

V ′(a) =
(

1− a

6

)
X(1− Y ) +

(
1− a−DBC

6

)
Y (1−X) = 0

a =
6X(1− Y ) + (DBC + 6)Y (1−X)

X(1− Y ) + Y (1−X)
.

Intuitively, the first term of the numerator weights the posi-
tion directly across from B0, and the second term does the
same for C0. Therefore the optimal action depends on the
relative values of X and Y .

The implication of this theorem is that an L1 strategy is
predisposed toward choosing the action across from the more
stable player. In general an agent observing that X = Y
causes the agent to always maximize its distance to the clos-
est agent. Of course, in the initial rounds of a game, there
are not enough observations to accurately forecast these un-
knowns. There are various ways to implement this policy,
from the method of estimating X̂ and Ŷ to its reliance on

priors of X̂ and Ŷ . Assume X̂0 =
X1 + cStick

2X1 + cTotal
where cStick

is the number of Stick moves and cTotal is the current time
steps. Here, the new parameter XL ∈ [0,∞] represents the

degree of attachment to the prior X̂0 = 1
2
, such that X−1

L

is the learning rate at which this estimate converges to the
true value. With few observations, X̂0 will be noisy for low
XL (high learning rate). A high learning rate implies that if
one player is constant but the other moves, this strategy will
move sharply across from the constant player. When both
players have been constant, W is undefined because the ran-
dom (or half-random) cases does not occur, and therefore in
that case there are a range of optimal actions. Since an-
other feasible implementation is to assume both players are
constant until there is contrary evidence, there is certainly
room for parameterizing the preferred response in this case.
However, given asymmetric behaviors, the theorem holds,
where the constant player is the preferred partner.

For L2, we are looking for the best strategy given some
combination of the first two levels, which is partially observ-
able in the PI-POMDP. L2 optimizes against a distribution
of L0s and L1s. The new PI-POMDP is therefore distributed
across these two levels, as well as the range of parameters.

We have already solved the exclusive L0 case, which will de-
termine the default L2 behavior unless something close to
L1 is observed.

When examining the rest of this PI-POMDP, this new
type adds two elements to the policy calculation, which
again depend on the parameters of the policy. First,
the move-away-from-closest-player factor, represented by a
slower learning rate and strong commitment to equal priors,
exerts an influence on future levels to move directly across
from the other player. Second, the punish-movers factor
makes this movement less rewarding.

Theorem 2. Against HBetween-across
B1 and HBetween-across

C1 , the

optimal rule for agent I2 is HStick
I2 .

Proof. (Sketch) With two L1s B1 and C1, each L1 is try-
ing to move away from its two opponents. L1 is continually
estimating X̂ and using the estimate to adapt its strategy,
which is to follow across from the other two agents, accord-
ing to relative stickiness. An optimal rule here is just HStick

I

because B1 prefers to move Across(I2) over a moving agent,
which C1 certainly is. This tendency means that whenever
B1 registers a move by C1, it moves a little farther from
I2. This new move then registers as a move for C1, which
in turn updates its action, and so on. This repetitive rule
may reach oscillations, but the net effect will be to maneu-
ver away from I2, to the benefit of I2. This policy is correct
across the range of XL.

The interesting case is when the L2 player is up against
one L0 and one L1 because essentially πC0 “leads” and πB1

“follows”. The asymmetry of strategies allows for a new rule
to emerge. In effect, πB1 is constructed to move away from
the semi-random πC0 , but also from our agent I2. We can
use this tendency to our advantage in the best response.
B1 tends to play HAcross

B1 from the C0 with weighting WC =
Ŷ0(1−Ẑ0)

Ŷ0(1−Ẑ0)+Ẑ0(1−Ŷ0)
where Ẑ0 is the staying probability of I2.

Thus, in that case we would hope to keep Ẑ0 greater than
Ŷ0.

Theorem 3. Against HBetween-across
B1 and πSemi-random

C0 (Y ),

the optimal rule for agent I2 is HStick
I until the number of

moves of πSemi-random
C (Y ) reaches a certain threshold m, and

then to either move Across(C0) if C0 is too close or Stick as
(B1) moves closer to Across(I2).

Proof. (Sketch) We will consider the extreme cases
where Y0 = 0 or Y0 = 1, and XL = 0 or XL = ∞. If
Y0 = 0, then WC → 0 when Ẑ0 > 0 and B1 → Across(I2),
regardless of the value of XL. To accelerate this beneficial
response, I2 needs to Stick. If Y0 = 1, then HBetween-across

B1 (XL)
depends on the value of XL. As XL → 0, B1 is very sensitive
to differences in moving probability. WC → 1 when Z0 < 1
and B1 → Across(C0). To prevent this harmful response, I2
should Stick as much as possible, but recognizing that the
location of C0 matters. It is preferable that C0 be far from
I2 since B1 will make room for it. In the worst case, if I2
moves Across(C0) it gets a minimum reward of 6 and ex-
pects a reward of 9, so that action is optimal if the current
configuration gives a lower score. As XL → 1, B1 retains
more committment to its priors and has a high affinity for
moving exactly in between I and C, unless a large difference
(Ẑ0− Ŷ0) accrues. Therefore it is safer in that case for I2 to
move Across(C0) if the learning rate X−1

L is small. There-
fore, depending on the relative values of XL and Y0, it may
be optimal either to Stick or Across.
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We should note here that L2 can only classify opponents
in one of two ways. The special case is L1 behavior, which is
confined to a window of actions generally across from the two
opposing players. The default classification is L0, which is
defined by some combination of constant action and uniform
random action. The significance of this simple modeling is
that L2 would classify itself as L0, albeit with a high stay-
ing probability. Because L1 and L2 both have a tendency
to move Across from the stickier players given sufficient in-
formation, this property will be selected at future levels. In
fact, as more reasoning is applied, optimal strategies will
start as constant for longer and longer as they attempt to
out-wait earlier types. In those cases where all players have
been constant from the beginning of the game, the decision
about when to move is determined by the cost of remaining
in the same location combined with the degree of reasoning
ascribed to the opponents. In this case, the higher strate-
gies are discouraged from moving at all due to this tendency
to punish moving players. We can therefore consider the
parameter X2 to mean probability of moving into an Across
position, especially when the current position is suboptimal.

The iterated best-response methods employed here do not
necessarily adhere to the principle of auto-compatibility,
whereby players do well against copies of themselves. Evo-
lutionary strategy selection would pursue this goal more
closely. A game with two of the same agent and one that is
different would take on a new focus, where other forms of co-
operation may be attainable that involve breaking the simple
delayed across-move found by interated best response.

6. EXPERIMENTS
The levels of LG, while useful, are theoretical constructs.

Nonetheless, the basic elements of this account arose in a
group of agents developed independently. This section shows
the viability of the level-based analysis by applying it to
the two rounds of open LG competitions, one in Dec. 2009
and the other in Dec. 2010. The submitted strategies were
a diverse collection. No two were alike and ranged from
complete uniform action to near constant, to Across-seeking
and initiating, and many in between.

To apply the model to real agents, we would like to clas-
sify each strategy by level or as a hybrid between levels.
If our PI-POMDP model is a good fit for LG, populations
consisting of agents that correspond to a similar mix of
levels should behave, and score, in roughly the same way
as their idealized counterparts. Since each level has its
unique strengths and weaknesses, performance depends on
the makeup of the population and specifically the relative
frequency of each level. For the purposes of this paper, we
classify a strategy by inspecting how it scores against ide-
alized strategies from each of the levels we identified. See
Figure 2 and Tables 1 and 2, right hand side, for these es-
timated levels. We ran the submitted agents against strate-
gies over various values for the relevant parameters, such as
X0, X1, X2 ∈ [0, 0.5, 0.75, 0.9, 0.95, 1.0]. Using the derived
strategies as benchmarks to compare to, we take the squared
difference between unknown agent and level representative,
and find the smallest difference between two adjacent scor-
ings, say Level 2.95 and 2.975.

The rankings of the players in both tournaments provide
a rough correlation to the amount of reasoning. The bot-
tom half of the 2009 performers act like the base assump-
tion strategies. The top half behave like those derived in
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Figure 2: Estimated levels of competitors in two
Lemonade-stand Game tournaments. Both sets of
agents show positive correlation between reasoning
and performance. R2 values are 0.77 for 2009 and
0.34 for 2010. The more recent agents show a shift
to higher reasoning levels, as well as a compression
of scores.

the higher levels of the PI-POMDP model. From the 2010
dataset we find that on average reasoning has shifted up a
level. Players identify the Across position as a goal state,
but the top performers are more patient to get there, which
implies more reasoning according to the model.

Another prediction of this model is that agents that per-
form too much reasoning do less well than those that go just
beyond the average level of the population. We ran tour-
naments with both sets of agents and two additional agents
drawn from the model population. As Tables 1 and 2 show,
in the 2009 competition a strategy that is close to the Level
1 ideal (but modified for fast Across) outperforms the rest,
while a higher level strategy at Level 2.975 only gets to the
middle of the pack. In the 2010 population, this ordering is
reversed. Note that winning the competition is, in a sense,
easy. Given our analysis, the only missing information is a
guess of the average reasoning level of the population. Nev-
ertheless, without access to the complete set of submitted
agents, identifying the appropriate reasoning level is a seri-
ous challenge.

7. CONCLUSION
This article introduced a PI-POMDP analysis for repeated

games and applied it to the Lemonade-stand Game compe-
tition. In the competition, simple heuristics outperformed
intricate learning schemes, suggesting that PI-POMDP or
CH analysis might be preferable to domain-general best
responses in strategic interactions. The Lemonade-stand
Game rewards strategies that trade off patient exploration
for speed and commitment. Those participants who opt
for too much exploration over model-based responses suf-
fer against more carefully optimized strategies. The model
demonstrates that players must employ some basic heuris-
tics in the early stages of a game. If they do not, they risk
getting classified as the less responsive, consistent, or coop-
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Table 1: 2009 LSG Tournament results including two agents inspired by the PI-POMDP hierarchy (italicized).
The winners are in bold. Level 0.83 would correspond to a player that Sticks with probability of 0.83, but
random the rest of the time. An agent that would qualify as Level 2.63 would mean that a player Sticks
when in an advantageous starting position. When its initial spot is less beneficial than it is constant with
probability equal to 0.63, and the rest of the time moves Across from another player, preferring the more
constant one. In cases where it is already Across from a player, it remains in place by choosing the same
action.

Rank Strategy (Affiliation) Score Error Level Parameterized Level
1. PI-POMDP Level 1.0 modified (New addition) 8.72 ± 0.0071 L1 1.00
2. EA2 (Southampton/Imperial) 8.56 ± 0.0069 L2 2.63
3. CoOpp (Rutgers) 8.51 ± 0.0055 L2 2.38
4. ModifiedConstant (Pujara, Yahoo!) 8.48 ± 0.0076 L2 2.93
5. PI-POMDP Level 2.975 (New addition) 8.10 ± 0.0083 L2 2.98
6. Waugh (Carnegie Mellon) 8.00 ± 0.0087 L0 0.96
7. ACT-R (Carnegie Mellon) 7.88 ± 0.0086 L0 0.96
8. GreedyExpectedLaplace (Princeton) 7.43 ± 0.0086 L0 0.83
9. FrozenPontiac (U Michigan) 7.38 ± 0.0075 L0 0.63
10. Kuhlmann (U Texas Austin) 6.94 ± 0.0054 L0 0.13

Table 2: 2010 LSG Tournament results including two agents inspired by the PI-POMDP hierarchy.
Rank Strategy (Affiliation) Score Error Level Parameterized Level
1. PI-POMDP Level 2.975 (New addition) 8.30 ± 0.0099 L2 2.98
2. TeamUP (Southampton/Imperial) 8.25 ± 0.0099 L2 2.83
3. Waugh (Carnegie Mellon) 8.19 ± 0.0094 L2 2.93
4. ModifiedConstant (Pujara, Yahoo!) 8.17 ±0.0097 L2 2.93
5. Matchmate (GA Tech) 8.15 ±0.0095 L2 2.13
6. Shamooshak (Alberta) 8.10 ±0.0094 L2 2.25
7. GoffBot (Brown) 7.97 ±0.0108 L2 2.13
8. Collaborator (Rutgers) 7.95 ±0.0105 L2 2.38
9. Meta (Carnegie Mellon) 7.80 ±0.0102 L2 2.38
10. PI-POMDP Level 1.0 modified (New addition) 7.80 ±0.0096 L1 1.00
11. Cactusade (Arizona) 7.27 ±0.0085 L2 2.13

erative partner and suffering as a result.
Despite the difficulty of behavior forecasting, there is no

question that learning can play a role, even among higher
level strategies. However, that learning needs to take place
in the proper space, or else a strategy will not have the ca-
pacity to react to basic heuristics. For instance, the top
three 2009 players did adapt somewhat in response to their
opponents. They did so by recognizing that they were not
playing against distributions like those found in single-agent
domains, but other players who understood the rules and
were prepared to leverage them against slower players. The
PI-POMDP framework identifies this reasoning process and
is able to suggest a strategy that performs much better than
previous agents. The resulting population profile gives in-
sight to predict our opponents and respond preemptively.

In sum, the PI-POMDP analysis achieves good predictions
of the strategies’ performances. Furthermore, it has revealed
characteristic properties of the LG. Future work will aim to
show its applicability to further domains and establish the
method as a framework to understand similar multiagent
games of this kind.

8. ACKNOWLEDGMENTS
The authors would like to thank the National Science

Foundation for support on this project via NSF HSD-
0624191.

9. REFERENCES
[1] D. Billings. The first international roshambo

programming competition. ICGA Journal, 23, 2000.

[2] C. F. Camerer. Behavioral Game Theory: Experiments
in Strategic Interaction. Princeton University Press,
2003.

[3] C. F. Camerer, T.-H. Ho, and J.-K. Chong. A
cognitive hierarchy model of games. Quarterly Journal
of Economics, 119:861–898, 2004.

[4] M. Costa-Gomes, V. Crawford, and B. Broseta.
Cognition and behavior in normal-form games: An
experimental study. Econometrica, 69(5):1193–1235,
2001.
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