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Abstract. The number of proposed reinforcement learning algorithms
appears to be ever-growing. This article tackles the diversification by
showing a persistent principle in several independent reinforcement learn-
ing algorithms that have been applied to multi-agent settings. While their
learning structure may look very diverse, algorithms such as Gradient
Ascent, Cross learning, variations of Q-learning and Regret minimiza-
tion all follow the same basic pattern. Variations of Gradient Ascent
can be described by the projection dynamics and the other algorithms
follow the replicator dynamics. In combination with some modulations
of the learning rate and deviations for the sake of exploration, they are
primarily different implementations of learning in the direction of the
reinforcement gradient.
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1 Introduction

Looking at the publications of major conferences in the field of multi-agent learn-
ing, the number of proposed multi-agent learning algorithms is constantly grow-
ing. Many domain-specific problems are circumvented by modifying the learning
algorithms in question for the task at hand. A survey of well-established multi-
agent learning algorithms with their various purposes is give in [5], and demon-
strates the need for a comprehensive understanding of their similarities and
differences. In order to compliment empirical comparisons between multi-agent
learning algorithms [15], this article will decompose several learning algorithms
structurally and deliver qualitative insights. The diversity of learning algorithms
makes it imperative to specify the assumptions and learning bias which precede
any discussion [6].

This article considers independent reinforcement learning algorithms (or learn-
ing with Minimal Information) applied to multi-agent games, and points out the
prevailing principle of learning along the reinforcement gradient within a seem-
ingly diverse set of algorithms. In particular, Cross Learning [3, 7], Regret Mini-
mization [9], as well as variations of Gradient-Ascent [1, 4, 12] and Q-learning [8,
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14] are considered. In order to demonstrate their inherent similarity, each algo-
rithm is linked to a dynamical system by taking an infinitesimal learning rate.
These links have been established by previous work, but the origin of their sim-
ilarity has not been discussed satisfactorily.

Q-learning has been linked to a dynamical system which allows decomposing
of the learning dynamics into exploitation and exploration terms [14]. This re-
veals that the exploitation terms, which move the behavior toward higher payoff,
are equivalent to Cross Learning as described in [3]. The remaining terms allow
for inferior strategies to be explored. This article will extend this decomposition,
and further relate Cross Learning to the most fundamental concept of learning
to increase payoff – learning along the reinforcement gradient.

The remainder of this article is structured as follows: Section 2 formally
introduces the concepts of Game Theory that are used in the analysis. The
reinforcement gradient is introduced and linked to Gradient-Ascent in Section 3.
Subsequently, Section 4 relates the gradient to the replicator dynamics, which is
the basis of several learning algorithms. Finally, Section 5 concludes the article.

2 Background

Game theory models strategic interactions in the form of games. Each player has
a set of actions, and a preference over the joint action space which is captured in
the numerical payoff signal. For two-player games, the payoffs can be given in a
bi-matrix (A,B), that gives the payoff for the row player in A, and the column
player in B (see Figure 1). In this example, the row player chooses one of the
two rows, and the column player chooses either column, and the outcome of this
joint action determines the payoff to both.

Players repeatedly interact and receive a payoff according to their joint ac-
tion. At any time t, the policy πp = (πp1 , π

p
2 , . . . , π

p
i , . . .) of a player p denotes

the probability distribution over the available actions, where πpi represents the
probability of choosing action i. The joint policy π = (π1, π2, . . .) describes the
behavior of all players at a specific time instant. For ease of notation, we may
refer to the joint policy of all opponents of player p as π−p. The expected re-
ward that player p gets, when all players follow a joint policy π is denoted as
V p(πp, π−p).

3 The Reinforcement Gradient

The reinforcement gradient is used in Gradient-Ascent. Let α be the learning
rate. Player p updates its policy πp at time t according to the increase of the

(
A11, B11 A12, B12

A21, B21 A22, B22

)
Fig. 1: General payoff bi-matrix (A, B) for two-agent two-action games.
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expected reward V p(πp, π−p) that a change in πp induces against opponents
following their joint policy π−p.

πp(t+ 1)← πp(t) + α
∂V p(πp, π−p)

∂πp

This implies for any action i:

πpi (t+ 1)← πpi (t) + α
∂V p(πp, π−p)

∂πpi

The ith element of the gradient can be calculated as the partial derivative of V
with respect to πi. Let ei denote the ith unit vector. Using the regular differential
would lead out of the policy space, hence the differential δei first needs to be
projected onto the policy space using the orthogonal projection function Φ(ζ) =
ζ − 1

n

∑n
j ζj , where n is the number of actions.

∂V (π, σ)

∂πi
= lim
δ→0

[π + Φ(δei)]Aσ − πAσ
δ

= Φ(ei)Aσ

= eiAσ −
1

n

n∑
j

ejAσ

These dynamics are also known as the Projection Dynamics [10]. They are very
similar to the replicator dynamics, which are discussed in the context of several
learning algorithms within the next section.

4 Algorithms and the Reinforcement Gradient

This section first presents three variations of gradient learning, which involve
the gradient in their very definition. Subsequently, three other reinforcement
learning algorithms are discussed: Cross Learning as an example policy learner,
and Frequency Adjusted Q-learning and Regret Matching as examples of value
based learning. These three algorithms yield the replicator dynamics as a core
element of their learning behavior. The replicator dynamics are in turn very
close to the reinforcement gradient.

Recall the Gradient-Ascent update rule presented in the previous section,
and let u = ( 1

n , . . . ,
1
n ).

πpi (t+ 1)← πpi (t) + α
∂V p(πp, π−p)

∂πpi
= πpi (t) + α [eiAσ − uAσ]

The change ∆πpi (t) = πpi (t+ 1)− πpi (t) can be written as:

∆πpi (t) = α
[
eiAσ

T − uAσT
]
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The projection dynamics do ensure that
∑
i πi = 1, i.e., the policy remains

in the tangent space of the policy space. However, it is not guaranteed that
∀i, 0 ≤ πi ≤ 1. Hence, ∆πpi (t) may lead the policy out of the valid space of
probability distributions, and the actual update needs to be projected onto the
closest point in the policy space according to πp(t+ 1) = projection(πp +∆πp).
This also holds for the variants of Gradient Ascent unless stated otherwise.

The policy update rule Infinitesimal Gradient-Ascent (IGA) [12] is equiv-
alent to Gradient-Ascent with learning rate α → 0. The policy trajectory be-
comes a continuous dynamical system, where π̇pi (t) denotes the change in time.1

π̇pi (t) = α
[
eiAσ

T − uAσT
]︸ ︷︷ ︸

gradient learning

For two-agent matrix games, where πp = (x, 1−x), σ = (y, 1−y) and h = (1,−1)
the special case can be rewritten as follows:

ẋ = α(1− x)
[
yhAhT +A12 −A22

]
The modification Win or Learn Fast (WoLF) IGA [4] uses exactly the same
update rule, with the only modification that α may take two distinct values:
If the strategy πp receives a higher expected reward against opponents playing
π−p than an arbitrarily selected Nash Equilibrium strategy πp−e, then α = αmin.
Otherwise, the strategy is doing worse than the Nash equilibrium strategy and
α = αmax, where αmin < αmax. Naturally, this modification merely concerns
the speed of learning and not the direction.

π̇pi (t) =
[
eiAσ

T − uAσT
]{αmin if V p(πp, π−p) > V p(πp−e, π−p)

αmax otherwise

This modulation of the learning rate has been shown to lead to convergence of
WoLF IGA players in two-agent matrix games in self-play. However, WoLF IGA
requires the estimation of Nash equilibrium strategies and corresponding pay-
offs, hence it does not comply with the Minimal Information learning bias. The
modification Weighted Policy Learning [1] introduces a similar modulation
of the learning rate but only based on the reinforcement gradient.

π̇pi (t) = α
[
eiAσ

T − uAσT
]{πpi if ∂V p(πp,π−p)

∂πp
i

< 0

(1− πpi ) otherwise

In the two-agent matrix game it takes the following form:

ẋ = α(1− x)
[
yhAhT +A12 −A22

]{x if ∂V p(πp,σ)
∂x < 0

(1− x) otherwise

1 The limit can be derived in several ways: Either the limit of α→ 0 makes α disappear
in the resulting equation, or decomposing α = ζα′ and taking the limit of ζ → 0
retains a learning rate parameter in the equation.
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This modification of IGA actually resembles Cross Learning [7], which has
been linked to the replicator dynamics [3]. Cross Learning directly updates policy
πp based on the perceived reward ri(t) it receives after selecting action i.

πp(t+ 1)← [1− αri(t)]πp(t) + αri(t)ei

The learning rule is equivalent to a linear reward-inaction Learning Automata [15],
for other variations compare to [9]. The continuous dynamical system is very
similar to the one of Gradient Ascent.

π̇pi (t) = πpi α
[
eiAσ

T − πpAσT
]︸ ︷︷ ︸

replicator dynamics

In particular, the two-agent version of Cross Learning takes the following form,
which features the product of the two possible learning rate modulations of
Weighted Policy Learning:

ẋ = αx(1− x)
[
yhAhT +A12 −A22

]
It is worth noting here, that the modulation of the learning rate in both Weighted
Policy Learning and Cross Learning ensure that the learning update steps be-
come smaller as the policy approaches the boundary of the probability space. As
a result, the project function is not required.

The relation between policy learning and gradient learning may still be con-
sidered rather straight forward. However, also value based learning is based on
the same dynamics although the learning update rules appear to be very differ-
ent. Q-learning does not update the policy vector directly. It has been invented
for single-agent multi-state environments [16], but will here be discussed in the
multi-agent single-state version. The Q-learner repeatedly interacts with its en-
vironment, performing action i at time t, and receiving reward ri(t) in return. It
maintains an estimation Qi(t) of the expected discounted reward for each action
i. This estimation is iteratively updated according to the following equation,
known as the Q-learning update rule, where α denotes the learning rate and γ
is the discount factor:

Qi(t+ 1)← Qi(t) + α

(
ri(t) + γmax

j
Qj(t)−Qi(t)

)
Let k be the number of actions, and let πpi denote the probability of selecting

action i, such that
∑k
i=1 π

p
i = 1. Furthermore, let πp(Q) = (πp1 , . . . , π

p
k) be a

function that associates any set of Q-values with a policy. The most prominent
examples of such policy generation schemes are the ε-greedy and the Boltzmann
exploration scheme [13]. This article exclusively discusses Q-learning with the
Boltzmann exploration scheme. Boltzmann exploration is defined by the fol-
lowing function, mapping Q-values to policies, and balancing exploration and
exploitation with a temperature parameter τ :

πpi (Q, τ) =
eτ

−1Qi∑
j e
τ−1Qj



6

The parameter τ lends its interpretation as temperature from the domain of
physics. High temperatures lead to stochasticity and random exploration, se-
lecting all actions almost equally likely regardless of their Q-values. In contrast
to this, low temperatures lead to high exploitation of the Q-values, selecting
the action with the highest Q-value with probability close to one. Intermediate
values prefer actions proportionally to their relative competitiveness.

The variation Frequency-Adjusted Q-learning (FAQ-learning) [8] mod-
ulates the update rule inversely proportional to πpi .

Qi(t+ 1)← Qi(t) +
1

πpi
α

(
ri(t) + γmax

j
Qj(t)−Qi(t)

)
This update rule leads to a dynamical system that can be decomposed into
exploration and exploitation terms, where the temperature parameter τ tunes
the balance between the two.

π̇pi = τ−1πpi α
[
eiAσ

T − πpAσT
]︸ ︷︷ ︸

exploitation

+απpi

(∑
k

πpk log πpk − log πpi

)
︸ ︷︷ ︸

exploration

The Polynomial Weights algorithm implements Regret Minimization [2, 9].
Player p maintains a set of weights wp, where wpi (t) denotes the loss of play-
ing i rather than the best action in hindsight. These weight are updated after
computing loss li(t) according to the following equation.

wpi (t+ 1)← wpi (t) [1− αli(t)]

The policy is generated from the weights by normalization.

πpi (wp) =
wpi∑
j w

p
j

Despite the great difference in update rule and policy generation, the infinites-
imal limit has been linked to a dynamical system of the following form, which
reveals its relation to gradient learning:

π̇pi (t) =
απpi

[
eiAσ

T − πpAσT
]

1− α [maxk ekAσT − πpAσ]

The denominator can be interpreted as a learning rate modulation dependent
on the best action’s learning update.

All of the algorithms described in this section reveal dynamics that increase
their payoff by either following the reinforcement gradient or the replicator dy-
namics. The two dynamics are closely related. Basically, the replicator dynamics
are an asynchronous implementation of the gradient. The terms of the gradi-
ent appear to be the foundation of independent reinforcement learning, with
learning rate modulations and some deviations for the sake of exploration and
coordination.
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5 Discussion and Conclusions

The main contributions of this article can be summarized as follows: First, it
shows how the concept of learning along the reinforcement gradient persists
throughout various independent reinforcement learning algorithms. Second, it
demonstrates the qualitative insights that have been facilitated by the estab-
lished link between the algorithms and their corresponding dynamical system,
obtained by taking the limit to an infinitesimal learning rate. Although the al-
gorithms have been discussed in the context of primarily matrix games, their
similarity is not limited to this domain but rather inherent to the algorithms.

This article attempts to bring structure into a field of seemingly continuous
diversification. The number of proposed learning algorithms is continuously in-
creasing, and we deem recognizing persistent principles such as learning along the
reinforcement gradient crucial to the integrity of the field. We aim to deepen the
understanding of this principle in future work, also substantiating the analysis
with empirical support.
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