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Abstract

This article studies Frequency Adjusted Q-learning
(FAQ-learning), a variation of Q-learning that simulates
simultaneous value function updates. The main contri-
butions are empirical and theoretical support for the
convergence of FAQ-learning to attractors near Nash
equilibria in two-agent two-action matrix games. The
games can be divided into three types: Matching pen-
nies, Prisoners’ Dilemma and Battle of Sexes. This ar-
ticle shows that the Matching pennies and Prisoners’
Dilemma yield one attractor of the learning dynamics,
while the Battle of Sexes exhibits a supercritical pitch-
fork bifurcation at a critical temperature ofτ , where one
attractor splits into two attractors and one repellent fixed
point. Experiments illustrate that the distance between
fixed points of the FAQ-learning dynamics and Nash
equilibria tends to zero as the exploration parameterτ

of FAQ-learning approaches zero.

Multi-agent learning has received increasing attention in
the last years (Shoham, Powers, and Grenager 2007; Tuyls
and Parsons 2007). It has ubiquitous applications in today’s
world, due to for instance infrastructures such as internetand
mobile phone networks. The assumption of an automatic
agent actually acting in isolation is usually at best a sim-
plification. Since the multi-agent interactions are complex
and difficult to predict, multi-agent learning gains popular-
ity to find good policies to act in multi-agent systems, and
a variety of approaches have been devised (Panait and Luke
2005).

Learning in multi-agent environments is significantly
more complex than single-agent learning as the dynamics
to learn are changed by the learning process of other agents.
This makes predicting learning behavior of learning algo-
rithms in multi-agent environments difficult. The research
field is still rather young and despite raising interest in multi-
agent learning, the theoretical framework is rather thin.

Recently, Evolutionary Game Theory (EGT) has been es-
tablished as a tool to analyze independent reinforcement
learning applied to multi-agent settings (Hofbauer and Sig-
mund 2002; Tuyls and Parsons 2007). EGT replaces the as-
sumption of rationality from game theory by genetic op-
erators such as natural selection and mutation, and studies
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the evolution of population models that are subdued to the
genetic operators. A formal link of population models to
reinforcement learning has been established (Börgers and
Sarin 1997). Each population can be interpreted as a policy
of one agent, and the genetic operators that induce change
to the population correspond to the learning rule that up-
dates the agent’s policy. This allows to study the behavior
and convergence properties of learning algorithms by ana-
lyzing the corresponding dynamical system from EGT. In
addition, the stream of research exploiting the link between
reinforcement learning and dynamical systems also encom-
passes some sources which are not subsumed by EGT, but do
exploit the toolbox of dynamical systems in a similar way.

Seminal work has shown that Cross learning, a simple
policy learner, becomes equivalent to the replicator dynam-
ics when the learning rate is decreased to the infinitesimal
limit (Börgers and Sarin 1997). The link between learning
algorithms and dynamical systems in subsequent work is
generally based on the limit of infinitesimal learning rates.
This idea has been used in one of the first proofs of con-
vergence for independent reinforcement learning in multi-
agent settings. The proof shows that the average payoff of
Infinitesimal Gradient Ascent, a policy gradient learning al-
gorithm, converges to the Nash equilibrium payoff in two-
agent two-action matrix games, even though actual poli-
cies may cycle (Singh, Kearns, and Mansour 2000). This
result has been strengthened by introducing the Win-or-
learn-fast (WoLF) learning speed modulation. The policies
of Infinitesimal Gradient Ascent with WoLF learning rates
are proven to converge to the Nash equilibrium policies in
two-agent two-action games (Bowling and Veloso 2002).
In contrast to other reinforcement learning algorithms like
Q-learning, Infinitesimal Gradient Ascent assumes that the
agents possess a lot of information about the payoff struc-
ture. In particular, agents are usually not able to compute the
gradient of the reward function, which is necessary for this
algorithm. Variations of Infinitesimal Gradient Ascent have
been devised to tackle this issue, but these are beyond the
scope of this article.

The basis of this article is the evolutionary game theoretic
model of Q-learning (Tuyls, Verbeeck, and Lenaerts 2003),
which assumes simultaneous action updates for the sake of
the analysis. However, the analysis of the simplified evolu-
tionary model reveals game theoretically more desirable be-



havior than actual Q-learning. As a response, the variation
Frequency Adjusted Q-learning (FAQ-learning) has been
proposed, which simulates simultaneous action updates and
inherit the theoretical guarantees (Kaisers and Tuyls 2010).
The evolutionary model used in the research presented be-
low will therefore be referred to as FAQ-learning dynamics.

A notable extension to FAQ-learning is Lenient FAQ-
learning, which combines the advantages of lenient learn-
ing in coordination games with FAQ-learning (Bloember-
gen, Kaisers, and Tuyls 2011). While the before mentioned
articles about Q-learning assume Boltzmann action selec-
tion and primarily study learning trajectories in the pol-
icy space, there also exist a number of publications con-
sideringǫ-greedy Q-learning, concentrating on the dynam-
ics in the Q-value space (Gomes and Kowalczyk 2009;
Wunder, Littman, and Babes 2010).

This article adds to the theoretical guarantees of FAQ-
learning provided in (Kaisers and Tuyls 2010) by proving
convergence to fixed points near Nash equilibria in two-
agent two-action games, and by demonstrating a bifurcation
in a specific class of games. For the analysis, games are di-
vided into three classes, corresponding to Matching Pennies,
Prisoners’ Dilemma and Battle of Sexes type games. Theo-
retical examination reveals that Matching Pennies and Pris-
oners’ Dilemma type games yield one attracting fixed point
for FAQ-learning. The Battle of Sexes type games feature
one attractor for high exploration (temperature), and a su-
percritical pitchfork bifurcation at a critical temperature, be-
low which there are two attracting and one repelling fixed
point. Fixed points in all games approach Nash equilibria as
the temperature tends to zero.

The remainder of this article is structured as follows: The
following section introduces concepts from reinforcement
learning and (evolutionary) game theory. Subsequently, the
learning dynamics of FAQ-learning in two-agent two-action
matrix games are examined theoretically. The following sec-
tion presents simulation experiments that illustrate the learn-
ing behavior and convergence near Nash equilibria in three
representative games. Finally, conclusions summarize the
main contributions of this article and give directions for fu-
ture work.

Background
This section introduces the main concepts from reinforce-
ment learning and (evolutionary) game theory that this arti-
cle is based on. In particular, Q-learning and its relation to
evolutionary game theory are discussed. The general con-
cept of replicator dynamics is explained and the specific
replicator dynamics model that has been linked to FAQ-
learning is provided.

Game Theory
Game theory models strategic interactions in the form of
games. Each player has a set of actions, and a preference
over the joint action space which is captured in the numeri-
cal payoff signal. For two-player games, the payoffs can be
given in a bi-matrix(A,B), that gives the payoff for the row
player inA, and the column player inB (see Figure 1).

(

A11, B11 A12, B12

A21, B21 A22, B22

)

Figure 1: General payoff bi-matrix (A, B) for two-agent
two-action games.

A core solution concept in game theory is the Nash equi-
librium. Assume the row player plays his actions with prob-
ability (x, 1 − x), and the column player plays his actions
with probability(y, 1 − y). The policy pair(x, y) is a Nash
equilibrium if and only if no player can gain by unilater-
ally deviating from his policy. Letei denote theith unit
vector. Formally,(xe, ye) comprises a Nash equilibrium iff
∀i : xeAye ≥ eiAye andxeBye ≥ xeBei.

Q-learning
Q-learning was invented to maximize discounted payoffs
in a multi-state environment by Watkins, see (Watkins
and Dayan 1992). It was originally studied in single-agent
learning, where the learning process is markovian from the
agent’s point of view, i.e., the policy change only depends
on the current and known states of the world. This article
discusses single-state multi-agent Q-learning, which hasan
established but imperfect relation to evolutionary game the-
ory. In multi-agent learning, the environment is not marko-
vian from an agents point of view, as the optimal policy to
learn changes due to the adaptation of other agents. Conse-
quently, proofs from single-agent learning may not hold or
may require stronger assumptions (Bowling 2000). The dis-
cussion of single-state games is the first step to establish a
new framework for the analysis of multi-agent learning.

By definition, the Q-learner repeatedly interacts with its
environment, performing actioni at timet, and receiving re-
wardri(t) in return. It maintains an estimationQi(t) of the
expected discounted reward for each actioni. This estima-
tion is iteratively updated according to the following equa-
tion, known as the Q-learning update rule, whereα denotes
the learning rate andγ is the discount factor:

Qi(t+ 1)← Qi(t) + α

(

ri(t) + γmax
j

Qj(t)−Qi(t)

)

Let k be the number of actions, and letxi denote the proba-
bility of selecting actioni, such that

∑k
i=1

xi = 1. Further-
more, letx(Q) = (x1, . . . , xk) be a function that associates
any set of Q-values with a policy. The most prominent exam-
ples of such policy generation schemes are theǫ-greedy and
the Boltzmann exploration scheme (Sutton and Barto 1998).
This article exclusively discusses Q-learning with the Boltz-
mann exploration scheme. Boltzmann exploration is defined
by the following function, mapping Q-values to policies, and
balancing exploration and exploitation with a temperature
parameterτ :

xi(Q, τ) =
eτ

−1Qi

∑

j e
τ−1Qj

(1)

The parameterτ lends its interpretation as temperature from
the domain of thermodynamics. High temperatures lead to



stochasticity and random exploration, selecting all actions
almost equally likely regardless of their Q-values. In con-
trast to this, low temperatures lead to high exploitation of
the Q-values, selecting the action with the highest Q-value
with probability close to one. Intermediate values prefer
actions proportionally to their relative competitiveness. In
many applications, the temperature parameter is decreased
over time, allowing initially high exploration and eventual
exploitation of the knowledge encoded in the Q-values.
An examination of the Q-learning dynamics under time
dependent temperatures is given in (Kaisers et al. 2009).
Within the scope of this article, the temperature is kept
constant for analytical simplicity and coherence with the
derivations in (Tuyls, ’t Hoen, and Vanschoenwinkel 2005;
Tuyls, Verbeeck, and Lenaerts 2003).

FAQ-learningis equivalent to Q-learning, except for the
update rule. The magnitude of each learning step for action
i is adjusted by the inverse of the action probabilityxi (com-
puted at timet according to Eq. 1). FAQ-learning simulates
simultaneous action updates by increasing the learning steps
of less frequently selected actions.

Qi(t+1)← Qi(t)+
1

xi
α

(

ri(t) + γmax
j

Qj(t)−Qi(t)

)

Evolutionary game theory
Evolutionary game theory takes a rather descriptive perspec-
tive, replacing hyper-rationality from classical game theory
by the concept of natural selection from biology (Maynard-
Smith 1982). It studies the population development of indi-
viduals belonging to one of several species. The two central
concepts of evolutionary game theory are the replicator dy-
namics and evolutionary stable strategies (Taylor and Jonker
1978). The replicator dynamics presented in the next sub-
section describe the evolutionary change in the population.
They are a set of differential equations that are derived from
biological operators such as selection, mutation and cross-
over. The evolutionary stable strategies describe the possi-
ble asymptotic behavior of the population. However, their
examination is beyond the scope of this article. For a de-
tailed discussion, we refer the interested reader to (Hirsch,
Smale, and Devaney 2002; Hofbauer and Sigmund 2002).

Replicator dynamics
The replicator dynamics from evolutionary game theory for-
mally define the population change over time. A popula-
tion comprises a set of individuals, where the species that
an individual can belong to relate to pure actions avail-
able to a learner. The utility functionri(t) that assigns a
reward to the performed action can be interpreted as the
Darwinian fitness of each speciesi. The distribution of the
individuals on the different strategies can be described by
a probability vector that is equivalent to a policy for one
player, i.e., there is one population in every agent’s mind.
The evolutionary pressure by natural selection can be mod-
eled by the replicator equations. They assume this popu-
lation to evolve such that successful strategies with higher
payoffs than average grow while less successful ones decay.
These dynamics are formally connected to reinforcement

learning (Börgers and Sarin 1997; Tuyls and Parsons 2007;
Tuyls, ’t Hoen, and Vanschoenwinkel 2005). Let the pol-
icy of a player be represented by the probability vector
x = (x1, . . . , xk), wherexi indicates the probability to play
action i, or the fraction of the population that belongs to
speciesi. The dot notation will be used to denote differenti-
ation over time, i.e.̇xi =

dxi

dt . The replicator dynamics that
relate to the learning process ofCross Learning, a simple
learning automaton, are given by the following set of differ-
ential equations (Börgers and Sarin 1997):

ẋi = xi



E [ri(t)] −

k
∑

j

xjE [rj(t)]





This is aone-populationmodel. In order to describe atwo-
populationmodel relating to two-agent matrix games played
by Cross learners, letei denote theith unit vector, andx and
y be policy vectors for a two-player matrix game, where the
utility functions are given by∀t : E [ri(t)] = eiAy and
∀t : E [rj(t)] = xBej for player one and two respectively.
The corresponding replicator dynamics are given by the fol-
lowing set of differential equations:

ẋi = xi [eiAy − xAy]

ẏj = yj [xBej − xBy]

The change in the fraction playing actioni is proportional to
the difference between the expected payoffseiAy andxBei
of action i against the mixing opponent, and the expected
payoffxAy andxBy of the mixed strategiesx andy against
each other. Hence, above average actions get stronger while
below average actions decay. The replicator dynamics main-
tain the probability distribution, thus

∑

i ẋi = 0. This article
only discusses two-action games, which impliesẋ1 = −ẋ2

and ẏ1 = −ẏ2. The policy space is completely described
by the unit square(x1, y1), in which the replicator dynamics
can be plotted as arrows in the direction of(ẋ1, ẏ1). Using
h = (1,−1) and eliminatingx2 andy2, the equations can be
reduced to:

ẋ1 = αx1(1− x1)
[

y1hAh
T +A12 −A22

]

ẏ1 = αy1(1 − y1)
[

x1hBhT +B21 −B22

]

The behavior ofCross learning, a simple policy iterator,
has been shown to converge to the replicator dynamics in
the infinitesimal time limit (Börgers and Sarin 1997). Based
on these insights, an analogical relation between Q-learning
and an extension of the replicator dynamics has been derived
in (Tuyls, Verbeeck, and Lenaerts 2003), which the follow-
ing subsection elaborates.

FAQ-learning dynamics
In (Tuyls, Verbeeck, and Lenaerts 2003) the authors ex-
tended the work of Borgers et al. of (Börgers and Sarin
1997) to Q-learning. More precisely, they derived the dy-
namics of the Q-learning process under the simplifying as-
sumption of simultaneous action updates. This yields the fol-
lowing system of differential equations, describing precisely
the FAQ-learning dynamics for a two-player stateless matrix
game (Kaisers and Tuyls 2010):



ẋi = xiα

(

τ−1 [eiAy − xAy]− log xi +
∑

k

xk log xk

)

ẏj = yjα

(

τ−1 [xBej − xBy]− log yj +
∑

l

yl log yl

)

(2)
with x, y the policies,α the learning rate,τ temperature pa-
rameter,A,B the payoff matrices, andei theith unit vector.
The striking part of this result was that the equations contain
a selection part equal to replicator dynamics, and a muta-
tion part. For an elaborate discussion in terms of selection
and mutation operators we refer to (Tuyls, ’t Hoen, and Van-
schoenwinkel 2005; Tuyls, Verbeeck, and Lenaerts 2003).

With this model, it now became possible to get insight
into the learning process, its traces, basins of attraction, and
stability of equilibria, by just examining the coupled system
of replicator equations and plotting its force and directional
fields. An example plot of the dynamics of the game Bat-
tle of Sexes is given in Figure 2, the corresponding payoff
matrix can be found in Figure 4.

Theory
This section delineates the theoretical support for conver-
gence of FAQ-learning. The dynamical system defined by
ẋ and ẏ yields a number of fixed points, which may be at-
tracting or repelling. Since learning trajectories converge to
attractors, the local stability (attracting or repelling)is the
main condition that is analyzed.

For notational convenience, we define auxiliary variables
a, b and functionsK1,K2 to simplify the FAQ dynamics
ẋ, ẏ from Equation 2, where we also drop the index for the
remainder of this section. Let the row player play policy
(x, 1 − x) against the column player with policy(y, 1− y).

a1 = A11 −A21

a2 = A12 −A22

b1 = B11 −B12

b2 = B21 −B22

h = (1,−1)

hAhT = a1 − a2

hBhT = b1 − b2

K1(x, y) = τ−1

1

[

yhAhT + a2
]

− log
x

1− x

K2(x, y) = τ−1

2

[

xhBhT + b2
]

− log
y

1− y

ẋ = αx(1 − x)K1(x, y)

ẏ = αy(1− y)K2(x, y)

At a fixed pointẋ = ẏ = 0. Since FAQ-learning with posi-
tive exploration parameterτ only covers the open set of poli-
cies(x, y) with x, y /∈ {0, 1}, we know thatαx(1− x) 6= 0.
Hence,ẋ = ẏ = 0 impliesK1(x, y) = K2(x, y) = 0.

The local stability can be analyzed by checking the eigen-

values of the Jacobian matrixJ =

[

∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

]

at a fixed
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0
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1

x

y

Figure 2: An example of a replicator dynamics plot, show-
ing the dynamics of the Battle of Sexes game.

point (Hirsch, Smale, and Devaney 2002).

∂ẋ

∂x
= α [(1− 2x)K1(x, y)− 1]

∂ẋ

∂y
= αx(1 − x)τ−1

1
hAhT

∂ẏ

∂x
= αy(1− y)τ−1

2
hBhT

∂ẏ

∂y
= α [(1− 2y)K2(x, y)− 1]

Since we have just established thatK1(x, y) = K2(x, y) =
0 at mixed fixed points, this can be plugged in to the Jaco-
bian.

J(x, y) =

[

−α αx(1 − x)τ−1hAhT

αy(1− y)τ−1hBhT −α

]

The eigenvalues can be computed using the quadratic for-
mula.

λ1/2 = −α±
1

2

√

4
∂ẋ

∂y

∂ẏ

∂x
+ (−α− (−α))2

= −α±

√

∂ẋ

∂y

∂ẏ

∂x

= −α± α

√

x(1− x)y(1 − y)τ−1

1
hAhT τ−1

2
hBhT

Dynamical systems theory has established that the fixed
point is locally attracting if∀λ : real(λ) ≤ 0 and ∃λ :
real(λ) < 0 (Hirsch, Smale, and Devaney 2002). This leads
to the following condition for stability, which will be de-
notedC(x, y) ≤ 1:

α

[

−1±

√

x(1− x)y(1− y)τ−1

1
τ−1

2
hAhThBhT

]

≤ 0

−1 ≤

√

x(1− x)y(1 − y)τ−1

1
τ−1

2
hAhThBhT ≤ 1

C(x, y) = x(1− x)y(1 − y)τ−1

1
τ−1

2
hAhThBhT ≤ 1

Sincex, (1−x), y, (1−y), τ1, τ2 all are positive, this condi-
tion holds independent ofx, y if hAhThBhT ≤ 0, leading
to eigenvalues withreal(λ) = −α < 0. In other words,
games that satisfyhAhThBhT ≤ 0 have only attracting



fixed points. These games already cover all Matching Pen-
nies type games and some Prisoners’ Dilemma type games.

The following system of equations defines the stability
boundary using two conditions for the fixed point, and one
for local stability.

τ1 log
x

1− x
− a2 = yhAhT

τ2 log
y

1− y
− b2 = xhBhT

x(1− x)y(1 − y)hAhThBhT ≤ τ1τ2

This set of equations can be solved numerically for any spe-
cific game to obtain fixed points and their stability prop-
erty. The following general discussion will provide support
for convergence in all three classes, especially discussing
the characteristic numberhAhThBhT associated with each
game.

Class 1 Matching Pennies type games: I.a1a2 < 0,
II. b1b2 < 0, and III.a1b1 < 0.

In order to link these conditions to the stability property,
consider thathAhThBhT = a1b1−a1b2−a2b1+a2b2. As-
sumptions I and II implya1a2b1b2 > 0, hencea1b2 anda2b1
are either both positive or both negative. Dividing out III one
findsa2b2 < 0. Assumea1b2 is negative, thena1b2a1a2 > 0
leads to the contradictiona21 < 0. Since all numbers in the
matrix need to be real, we concludea1b2 > 0 anda2b1 > 0.
In sum,hAhThBhT < 0, which leads to the eigenvaluesλ
of the Jacobian matrix to havereal(λ) = −α as explained
above. The fixed point is necessarily attracting in matching
pennies games, since∀λ, real(λ) < 0.
Class 2 Prisoners’ dilemma type games: I.a1a2 > 0 and
II. b1b2 > 0.

Games of this class can have both positive and negative
characteristic numbers. Games withhAhThBhT < 0 yield
necessarily attracting fixed points for the same reason as in
Class 1. However, a large number of games of this type have
positive characteristic numbers, e.g., for symmetric games
hAhThAThT ≥ 0. It remains to show that games with
III. (a1 − a2)(b1 − b2) ≥ 0 have attracting fixed points.

From I and II we know that[ya1 + (1− y)a2] 6= 0 and
[xb1 + (1− x)b2] 6= 0. This implies that there is only one
solution toK1(x, y) = K2(x, y) = 0:

y
a1
τ1

+ (1− y)
a2
τ1

= log
x

1− x

x
b1
τ2

+ (1 − x)
b2
τ2

= log
y

1− y

Figure 3 plots an example of the first equation. The temper-
atureτ determines the point of intersection between the two
lines: If a1 anda2 are positive, thenx → 1 asτ → 0. If
a1 anda2 are negative, thenx → 0 asτ → 0. Equivalent
conditions hold fory in relation withb1 andb2.

It is trivial to check that the stability condition holds for
sufficiently large temperatures. Sincex(1 − x) goes to zero
faster thanτ1, and similarlyy(1−y) goes to zero faster than
τ2, the stability conditionx(1 − x)y(1 − y)hAhThBhT ≤
τ1τ2 holds for all temperaturesτ > 0.
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Prisoners’ Dilemma Battle of Sexes

Figure 3: The Prisoners’ Dilemma features one fixed point,
because there is exactly one intersection between the linear
combination ofa1

τ1
and a2

τ1
with the log function. The Battle

of Sexes on the other hand features one or three fixed points,
depending on the slope of the linear combination.

Class 3 Battle of Sexes type games: I.a1a2 < 0, II. b1b2 <
0, and III.a1b1 > 0.

The first two implya1a2b1b2 > 0, hencea1b2 anda2b1
are either both positive or both negative. Dividing out the
third assumption we finda2b2 > 0. Assumea1b2 is posi-
tive, thena1b2a1a2 < 0 leads to the contradictiona21 < 0.
Since all numbers in the matrix need to be real, we conclude
a1b2 < 0 anda2b1 < 0. As a result, the characteristic num-
ber(a1 − a2)(b1 − b2) = a1b1 − a1b2 − a2b1 + a2b2 > 0.

From I and II we know that[ya1 + (1− y)a2] and
[xb1 + (1 − x)b2] both cross zero. Figure 3 illustrates the
difference between the Prisoners’ Dilemma and the Battle
of Sexes. It shows the functionlog x

1−x and the linear inter-
polation betweena1

τ1
and a2

τ1
. Large values ofτ lead to one

intersection, while sufficiently small values ofτ lead to three
intersections and corresponding fixed points.

The stability conditionx(1 − x)y(1 − y)hAhThBhT ≤
τ1τ2 is satisfied for largeτ . At the critical temperatureτcrit,
the stability condition holds with equality, leading to a su-
percritical pitchfork bifurcation of the fixed points inτ . Be-
low the critical temperature, two fixed points approach pure
Nash equilibria and are stable for the same reasons as the
fixed point in the Prisoners’ Dilemma. In addition, one fixed
point remains mixed, andx(1 − x) as well asy(1 − y) is
clearly bound away from zero. As a result, this fixed point is
not stable below the critical temperature.

Experiments
This section illustrates the convergence behavior, and theef-
fect of the exploration parameterτ on the distance of fixed
points to Nash equilibria. Each class of two-agent two-action
games is represented by one specific game. The payoff bi-
matrices(A,B) for Matching Pennies (Class 1), Prisoners’
Dilemma (Class 2), and Battle of Sexes (Class 3) are given
in Figure 4.

Let the row player play policy(x, 1 − x) against the col-
umn player with policy(y, 1 − y). The Nash equilibria of
these games lie at(1

2
, 1

2
) for the Matching Pennies,(1, 1)

for the Prisoners’ Dilemma, and at(0, 0), (1, 1), and(2
3
, 1

3
)

for the Battle of Sexes.
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Matching Pennies Prisoner’s Dilemma Battle of the Sexes

Figure 4: Payoff bi-matrices(A,B) for three representative
games.

Note, that the joint policy space is completely character-
ized by the pair(x, y) in the unit square. The dynamical
system can be inspected by plotting the replicator dynam-
ics(ẋ, ẏ) over the unit square, indicating the direction of the
vector field by arrows. This allows to determine the course
location of attractors by inspection. In addition, the fixed
points have been computed, and are marked with circles.

Figure 5 shows the empirical analysis of FAQ-learning:
Matching Pennies, Prisoners’ Dilemma and Battle of Sexes.
The top three rows show replicator dynamics (arrows) and
the computed fixed points (circles) for different temperature
parametersτ (first τ = ∞, secondτ = 0.72877, third τ =
0). The fixed points move between these discrete values for
τ as indicated by the lines of the last row. For reference, all
fixed points computed for the discrete values are also marked
in the last row.

The dynamics of FAQ-learning are independent of the
game when the exploration parameterτ tends to infinity. For
finite temperatures, the three games exhibit very different
behavior. However, In the limit ofτ → 0, the fixed points
coincide with the Nash equilibria of the game (see row 3).

The Matching Pennies yields one mixed equilibrium,
which is also an attracting fixed point of the FAQ-learning
dynamics for any positiveτ . In the limit τ → 0, the fixed
point’s stability weakens to Lyapunov stability (points that
start close will stay close to the fixed point, but not neces-
sarily converge to it).

The Prisoners’ Dilemma yields one pure equilibrium, and
one mixed fixed point that is always attracting. The lower
the temperatureτ , the closer the fixed point moves towards
the equilibrium. It is also stable in the limitτ → 0.

The Battle of Sexes yields three equilibria. However, for
high values ofτ , it only yields one attracting fixed point
that moves from(1

2
, 1

2
) toward the mixed equilibrium(2

3
, 1
3
).

This fixed point splits in a supercritical pitchfork bifurcation
at the critical temperatureτcrit ≈ 0.72877 and at position
(x, y) ≈ (0.5841, 0.4158). For low temperaturesτ < τcrit,
this game yields three fixed points that move closer to the
corresponding equilibria asτ is decreased. The two fixed
points moving toward the pure equilibria(0, 0) and (1, 1)
are attracting, and the third one moving toward(2

3
, 1

3
) is re-

pelling.
The relation between the exploration parameterτ of FAQ-

learning and the distance between fixed points and Nash
equilibria is closely examined in Figure 6. It shows that the
distance is constant zero for Matching Pennies, and mono-
tonically decreasing toward zero for the other two games.
Notably, the two emerging fixed points in the Battle of Sexes
result in the same distance plot, due to a certain symmetry
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Figure 5: Replicator dynamics (arrows) and fixed points
(dots) for the Prisoners’ Dilemma, Matching Pennies and
Battle of Sexes with temperaturesτ ∈ {∞, 0.72877, 0}
from top to third row. Last row shows trajectories of fixed
points as temperature is decreased, revealing the bifurcation
of fixed points in the Battle of Sexes. All indicated fixed
points are attracting, except for the mixed fixed point that
tends to(2

3
, 1

3
) after bifurcation (indicated with a dashed

line).

of the game.
In sum, FAQ-learning converges to fixed points in the

three representative games Matching Pennies, Prisoners’
Dilemma and Battle of Sexes. In addition, these fixed points
can be moved arbitrarily close to the Nash equilibria of these
games by choosing an exploration parameterτ close to zero.

Conclusions
The contributions of this article are two-fold: First, it is
shown theoretically that fixed points of FAQ-learning are at-
tracting in Matching Pennies and Prisoners’ Dilemma type
games, and that a supercritical pitchfork bifurcation occurs
in Battle of Sexes type games. Second, representative exam-
ple games of each category demonstrate that fixed points ap-
proach Nash equilibria, and illustrate the bifurcation of fixed
points in the Battle of Sexes.

This article contributes to the framework of multi-agent
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Figure 6: This figure shows the relation between exploration
parameterτ and the distance between fixed points (fp) of
FAQ-learning dynamics and Nash equilibria (eq). Asτ → 0,
the distance|fp− eq| → 0 as well.

learning by deepening the understanding of convergence
properties of independent reinforcement learning in multi-
agent settings. The method has been shown to work in the
policy space, and naturally extends to the Q-value space,
which allows to generalize insights to standard Q-learning.
By doing so, future work will strengthen the theoretical
guarantees and their impact to a wide array of applications.
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