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Abstract. Swarm intelligence has been successfully applied in various domains,
e.g., path planning, resource allocation and data mining. Despite its wide use, a
theoretical framework in which the behavior of swarm intelligence can be for-
mally understood is still lacking. This article starts by formally deriving the evo-
lutionary dynamics of ant colony optimization, an important swarm intelligence
algorithm. We then continue to formally link these to reinforcement learning.
Specifically, we show that the attained evolutionary dynamics are equivalent to
the dynamics of Q-learning. Both algorithms are equivalent to a dynamical sys-
tem known as the replicator dynamics in the domain of evolutionary game theory.
In conclusion, the process of improvement described by the replicator dynamics
appears to be a fundamental principle which drives processes in swarm intelli-
gence, evolution, and learning.

1 Introduction

Artificial intelligence (AI) is a wide spread field. The applications of AI range from
designing intelligent systems that are capable of dealing with un-anticipated changes
in the environment to modeling interactions in biological and sociological populations.
The success of learned behavior for any particular task greatly depends on the way
the agent was designed and whether it suits that specific domain. In constructing ar-
tificial intelligence agents, designers have to choose from a wide range of available
AI frameworks such as: swarm intelligence, reinforcement learning, and evolutionary
game theory. The best choice depends on the application the agent is trying to tackle. For
example, swarm intelligence is well suited for domains that require a robust behavior
of the population of agents (i.e., if one agent fails the system still has to achieve its re-
quired goal). The merits of swarm intelligence have been exploited in applications like
path planning, resource allocation and data mining [5, 13, 23, 27]. On the other hand,
reinforcement learning algorithms best fit agents that individually need to maximize a
possibly delayed feedback signal from the environment. As an illustration, reinforce-
ment learning can best fit agents that need to master chess playing [19], play soccer
robotics and control [14, 18] et cetera.

Both swarm intelligence and reinforcement learning have been explored empiri-
cally with considerable success, see for example [19, 16, 3, 10]. Reinforcement learn-
ing has been thoroughly discussed in single-agent environments, for which proofs of
convergence have been given, e.g., Q-learning [26]. In multi-agent settings, theoreti-
cal analysis poses additional challenges such as a non Markovian environment from
the agent’s point of view. Theoretical guarantees have been difficult to achieve, but [1,
21] laid the foundation for a new approach, linking multi-agent reinforcement learning



with evolutionary game theory. Recently, this link has been used to provide conver-
gence guarantees for multi-agent Q-learning [11, 12]. In swarm intelligence, there has
been much less progress in formalizing the dynamics of the domain or linking them to
other learning techniques.

In this paper we provide a formal derivation of Ant Colony Optimization (ACO),
a well known swarm intelligence algorithm. Interestingly, this mathematical derivation
reveals that swarm intelligence and reinforcement learning are intrinsically equivalent,
both following the replicator dynamics from evolutionary game theory. This is in line
with the conceptual equivalence conjectured in [?]. More specifically, this related work
has established conceptual and empirical evidence for the similarity of ACO and a net-
work of Learning Automata. This network of learning automata is formally related to
the replicator dynamics [1] that form the basis of the formal equivalence established in
this article. Here, it becomes clear that whether swarm intelligence, or reinforcement
learning was involved in a specific learning task, there seems to be a common process
that drives the improvement of the agents behavior, namely the replicator dynamics.

The remainder of the paper is organized as follows: Section 2 introduces concepts
from swarm intelligence, reinforcement learning and evolutionary game theory that are
the basis of the upcoming analysis. We proceed to introduce our mathematical formal-
ization of swarm intelligence in Section 3. Section 4, builds on the attained derivation to
formally link swarm intelligence and reinforcement learning. Section 5 presents related
work. Section 6 concludes and reflects upon various future research directions.

2 Background

This section introduces the main concepts from swarm intelligence, reinforcement learn-
ing, and evolutionary game theory that this article is based on. Specifically, ACO and
the update rule are first discussed. Then Q-learning, a specific reinforcement learning
algorithm, as well as the replicator dynamics are presented.

2.1 Ant Colony Optimization (ACO)

Ant Colony Optimization, which is widely used in swarm intelligence, is a class of al-
gorithms that takes inspiration from the foraging behavior of certain ant species. These
ants deposit pheromones to indicate favorable routes that should be followed by other
ants in the colony. ACO exploits similar biologically inspired behaviors in order to solve
optimization problems. Since the ACO’s introduction, there has been several variations
to the original optimization algorithm. Here we limit our focus to Ant Systems (AS), the
original ACO algorithm [2, 4]. The main characteristic of AS is that all the pheromone
levels are updated by all ants that have built a solution at the current iteration.

Typically in ACO the problem is defined by a graph G = (V,E), with V being the
set vertices, encoding states of the environment, and E representing the edges of the
graph, representing state transitions. An example of such a graphical model is shown
in Figure 1, whereby each of the edges admits a certain pheromone level τi,j . The ants
in such a scenario start at the initial vertex i and collectively find the shortest path to
the goal vertex g. The learning behavior for such a system is better explained through



Fig. 1. Graph illustration of a domain in which Ant Colony Optimization can find the shortest
path from i to g.

Algorithm 1. Learning starts by initializing the pheromone levels at each of the edges
either randomly or uniformly. The ants transition from a certain node on the graph to
another using a stochastic transition probability derived from the pheromones:

pi,j =
ταi,jη

β
i,j∑

c τ
α
i,cη

β
i,c

(1)

where α and β are parameters that present the tradeoff between the pheromone levels
τi,j and the heuristic information ηi,j1. Typically, ηi,j is defined as inversely propor-
tional to the distance between the nodes i and j.

Algorithm 1 Ant Colony Optimization Metaheuristic
1: Initialize the pheromone levels τi,j ← τ0 ∀(i, j) ∈ E
2: Choose the starting vertex on the graph vstart = i ∈ V
3: for iteration t = 1, 2 . . . do
4: for ant m = 1, 2, . . . do
5: vpos = vstart and u = {}
6: while ∃ feasible continuation (vpos, j) of u do
7: Select j according to pi,j , where

8: pi,j =

0 if (i,j) infeasible
ταi,jη

β
i,j∑

c τ
α
i,cη

β
i,c

otherwise

9: u = u⊕ (vpos, j) and vpos = j
10: Update the pheromone trails τi,j using Equation 2.

1 It is worth noting that ηi,j plays a role similar to reward shaping in reinforcement learning.



Assuming there exists a feasible path to the goal, or more formally assuming that
the graph is an ergodic set if the goal state is removed, then all ants will be absorbed in
that goal state given sufficient time. After reaching the goal state the pheromone trail of
that path is updated according to the following Equation [3] :

τi,j(t+ 1) = (1− ρ)τi,j(t) +
M∑
m=1

δi,j(t,m), (2)

where τi,j represents the pheromone level at the edge (i, j), ρ denotes the pheromone
evaporation rate, M is the number of ants and δi,j(t,m) = Q

ni,j
L with Q being a

constant, ni,j being the number of times edge (i, j) has been visited2 by the mth ant
and L being the total length of themth ant’s trajectory3. It may be convenient to choose
Q = 1

M to maintain a bounded sum for an arbitrary number of ants.

2.2 Q-learning

Q-learning [26] is a reinforcement learning algorithm that is designed to maximize a
discounted sum of future rewards encountered by an agent interacting with an envi-
ronment. Originally, Q-learning was used in a single-agent learning setting, where the
learning process is markovian, i.e., the current state and action are considered to be
sufficient statistics to determine the successor state and the reward.

By definition, the Q-learner repeatedly interacts with its environment, performing an
action i at time t, and receiving reward ri(t) in return. It maintains an estimation Qi(t)
of the expected discounted reward for each action i. This estimation is iteratively up-
dated according to the following equation, known as the Q-learning update rule, where
α denotes the learning rate and γ is the discount factor:

Qi(t+ 1)← Qi(t) + α

(
ri(t) + γmax

j
Qj(t)−Qi(t)

)
(3)

2.3 Evolutionary Game Theory

Evolutionary game theory takes a rather descriptive perspective, replacing hyper-rationality
from classical game theory by the concept of natural selection from biology [17]. It
studies the population development of individuals belonging to one of several species.
The two central concepts of evolutionary game theory are the replicator dynamics and
evolutionary stable strategies [20]. The replicator dynamics presented in the next sub-
section describe the evolutionary change in the population. They are a set of differential
equations that are derived from biological operators such as selection, mutation and
cross-over. The evolutionary stable strategies describe the possible asymptotic behavior

2 Note that in some related work a visited edge may only be updated once [3]. In contrast, our
model corresponds to an ant that dispenses a fixed pheromone amount per step, and may thus
update a link for every time it has been visited.

3 Please note that the number of trajectories and the number of ants are the same under the
presented assumptions.



of the population. However, their examination is beyond the scope of this article. For a
detailed discussion, we refer the interested reader to [9].

Consider a population comprised of several species, where each species i makes up
a fraction xi of the population x = (x1, x2, . . . , xn). The replicator dynamics represent
a set of differential equations that formally describe the population’s change over time.
A population comprises a set of individuals, where the species that an individual can
belong to relate to pure actions available to a learner. The Darwinian fitness fi of each
species i can be interpreted as the expectation of the utility function ri(t) that assigns
a reward to the performed action. The distribution of the individuals on the different
strategies can be described by a probability vector that is equivalent to a policy for one
player, i.e., there is one population in every agents mind. The evolutionary pressure by
natural selection can be modeled by the replicator equations. They assume this popu-
lation to evolve such that successful strategies with higher payoffs than average grow
while less successful ones decay. The general form relates the time derivative ẋ to the
relative fitness of species i.

ẋi = xi

[
fi(x)−

∑
k

xkfk(x)

]
,where fi = E [ri(t)|x] (4)

In two-player asymmetric games, the fitness functions can be computed from the payoff
bi-matrix (A,B), where ei is the ith unit vector:

ẋi = xi [eiAy − xAy]
ẏj = yj [xBej − xBy] (5)

where xi,yi are the probabilities of a player picking action i and j respectively, x,y are
the action probability vectors for each of the players and A,B are matrices representing
the payoff, e.g., fi(x) = E [ri(t)|y] = eiAy for the first player. Equation 5 clearly
quantifies the selection scheme of a strategy i as being the difference between the at-
tained payoff of that same strategy, i.e., (Ay)i compared to the average payoff over all
other strategies xTAy.

These dynamics are formally connected to reinforcement learning [1, 21, 22]. For
the ease of readability we leave this derivation for later sections. Namely, we present
these equations in Section 4 once deriving the relation between ACO and reinforcement
learning.

3 Mathematical Derivation

In this section we will provide the mathematical derivations involved in determining the
theoretical link between swarm intelligence and evolutionary game theory.

3.1 Assumptions and General Framework

We examine the theoretical behavior of the Ant Colony Optimization (ACO) algorithm
given an infinite number of ants. In order to bound the pheromone level, we assume



that each ant dispenses an amount which is anti-proportional to the number of ants (i.e.,
Q = 1

M ). Note that the total trajectory length L equals
∑
b,c nb,c. Under these mild

assumptions, each pheromone update iteration can be described as follows:

τi,j(t+ 1)← (1− ρ)τi,j(t) + lim
M→∞

M∑
m=1

1

M

ni,j∑
b,c nb,c

, (6)

where ni,j and nb,c present the number of visits to the edges (i, j) and (b, c) respec-
tively. The limit is used to denote that we are interested in the behavior of such a system
as the number of ants grows to infinity.

ACO Replicator Dynamics Here we will derive the replicator dynamics of ACO and
reflect upon the technicalities involved.

We commence by examining the variation in the transition probability for an ant
being at a certain state i and moving to a state j. Taking the derivative of Equation 1 we
get :

ṗi,j =

(
ταi,jη

β∑
c τ

α
i,cη

β
i,c

)′

=
ατα−1i,j ˙τi,jη

β
i,j∑

c τ
α
i,cη

β
i,c

−
ταi,jη

β
i,j

∑
c ατ

α−1
i,c ˙τi,cη

β
i,c(∑

c τ
α
i,cη

β
i,c

)2
= αpi,j

τ̇i,j
τi,j
− αpi,j

∑
c

˙τi,c
τi,c

pi,c

= αpi,j

(
˙τi,j
τi,j
−
∑
c

˙τi,c
τi,c

pi,c

)
(7)

Equation 7 clearly resembles the general replicator dynamics given in Equation 4 when
written in the following form, where Θi,j =

˙τi,j
τi,j

:

ṗi,j = αpi,j

(
Θi,j −

∑
k

pi,kΘi,k

)
(8)

The attained model of ACO in Equation 8, quantifies the change in the probability of
choosing an action j in a given state i and therefore, represents a generalization of the
stateless replicator dynamics from Equation 4 to multiple-state games. This discussion
is further detailed in Section 4. Equation 8 also clearly represents the change in the
transition probabilities as a function of the level of the pheromone updates.

3.2 Rate of Change in the Pheromone Level

Next we will determine the rate of change in the pheromone level which is vital for solv-
ing Equation 8. Consider again the update rule given in Equation 6. Using the central
limit theorem this is re-written in the following format :



τi,j(t+ 1) = (1− ρ)τi,j(t) + E

(
ni,j∑
b,c nb,c

)

∆τi,j(t) = −ρτi,j(t) + E

(
ni,j∑
b,c nb,c

)

∆τi,j(t)

τi,j(t)
= −ρ+

E
(

ni,j∑
b,c nb,c

)
τi,j(t)

(9)

Considering infinitesimal time changes, Equation 9 can be written as :

˙τi,j(t)

τi,j(t)
= −ρ+

E
(

ni,j∑
b,c nb,c

)
τi,j(t)

(10)

Next we will provide a formal method to determine the expectation of Equation 10.
This formalization is based on the Markov Chain theory that will be introduced.

Markov Chain Theory A Markov Chain (MC) is a discrete time random process that
satisfies the Markov property. An MC typically involves a sequence of random variables
that evolve through time according to a stochastic transition probability. In our current
formalization we are more interested in an Absorbing Markov Chain (AMC). An AMC
is a variation of the former to include an Absorbing state. In other words, the system
has a state that once reach can never be left, therefore called absorbing.

In an AMC with t transient states and r absorbing state the probability matrix could
be written in the canonical format of Equation 11,

P =

 Q
∣∣ R∣∣

0
∣∣ I

 , (11)

where Q ∈ Rt×t is the transient state probability matrix, R ∈ Rt×ris the absorbing
transition probability matrix, 0 ∈ Rr×t zero matrix, and I ∈ Rr×r identity matrix.

The expected number of visits to a transient state is determined using, N =
∑∞
k=0 Qk =

(I − Q)−1, while the expected transient probabilities of visiting all the transient states
is given by H = (N − I)D−1, where D ∈ Rt×t is a diagonal matrix having the same
diagonal entries as N. The probability of an absorbing transition to occur is given by
B = NR with B ∈ Rt×r.

Equation 12 represents the expectation using the AMC theory. We have divided a
trajectory into three essential parts: (1) a transition from an initial state to a certain
state i, (2) a transition between two transient states (i, j) and (3) a transition probability
from a transient state to the goal or end state. These three parts present the possible
combinations of an ant to start at a certain initial state and reach the required destination.

Using the AMC chain theory and the trajectory division idea, we can re-write in
expectation. Many terms appear with powers related to a, b, α, and β, with a being the



number of visits to a certain link (i, j), b represents the length of a trajectory, (QbR)end
signifies the probability of a transient state to be absorbed, Qα

1,i is the expected proba-
bility to transient from an initial to an ith state, Qβ1

j,i . . .Q
βn
j,i are all the expected prob-

abilities of looping between states (i, j), and ψ = b − a − α −
∑
i<j βi, representing

the remaining division to get absorbed.

E

(
ni,j∑
b,c nb,c

)
=

∞∑
b=1

b∑
a=0

a

b(QbR)end

b−a∑
α=0

ψ∑
βj∈{1,...,n}

Qα
1,iQ

a
i,jQ

β1

j,i . . .Q
βn
j,iQ

b−a−α−
∑
i βi

j,end

 (12)

The attained results could now be substituted back in Equation 8, with Θi,j being:

Θi,j = −ρ+

∑∞
b=1

∑b
a=0

a
b

[
χ
∑b−a
α=0

∑ψ
βj∈{1,...,n} ΓΞΛ

]
τi,j

(13)

with χ = (QbR)end, Ξ = Qβ1

j,i . . .Q
βn
j,i , Γ = Qα

1,iQ
a
i,j , and Λ = Qb−a−α−

∑
i βi

j,end .
Substituting these in Equation 8 we get the full ACO model as :

ṗi,j
pi,j

= −αρ+ α

∑∞
b=1

∑b
a=0

a
b

[
χ
∑b−a
α=0

∑ψ
βj∈{1,...,n} ΓΞΛ

]
τi,j

(14)

− α
∑
l

pi,l

ρ+ ∑∞
b=1

∑b
a=0

a
b

[
χl

∑b−a
α=0

∑ψ
βj∈{1,...,n} ΓlΞlΛl

]
τi,l


where the subscript l denotes each of the matrices depending on the required edge.

4 Relation to reinforcement learning

In this section we will draw the connection between the attained model of ACO and
reinforcement learning. Namely, we start by presenting the dynamics of Q-learning and
then linking them to the attained ACO equations.

4.1 Q-learning Dynamics

In [21], the authors extend the work of [1] to derive the dynamics of Q-learning. Con-
sider the policy of two players to be represented as probability vectors x = (x1, . . . , xk)
and y = (y1, . . . , yz), where xi indicates the probability for player one to choose an
action i, k presents the kth allowed action for player one, yj manifests the probability
of the second player to pick action j, and z is the zth allowed action for player two.



Based on these definitions the dynamics of Q-learning in a two-player stateless matrix
game are derived as,

ẋi = xiα

(
τ−1Q̇i −

∑
k

Q̇kxk

)

ẏj = yjα

(
τ−1Q̇j −

∑
z

Q̇zxz

)
(15)

Taking the update rule of Equation 3 into account, the dynamics of Q-learning could be
written as,

ẋi = xiα

(
τ−1[eiAy − xAy]− log xi +

∑
k

xk log xk

)
(16)

ẏj = yjα

(
τ−1[xBej − xBy]− log yj +

∑
z

yz log zz

)

with x,y the policies of each player, α the learning rate, τ temperature parameter, A, B
the payoff matrices, and ei the ith unit vector. The most interesting part of this results
is that the previous equations contain a selection part that is equivalent to the replicator
dynamics and a mutation part. For more details interested readers are referred to [21].

With these equations the dynamics of Q-learning in two player stateless games
could be better understood and analyzed. As we will discuss later in the document,
our formulation of ACO and its relation to reinforcement learning requires an extension
of the above equations to multi-state games. Some work on the generalization of the
replicator dynamics to multiple-states in [8] had been achieved. But for a better under-
standing of the replicator dynamics of ACO we require a more general framework that
explains the dynamics of more coupled states. This has not been achieved yet, but we
hope that our ACO formulation could give a better insight on the analysis of complex
forms multi-state games and present a rigorous starting point for more complex tasks.

4.2 Ant Colonies as Reinforcement Learning Agents

In analyzing this relation it is important to note that here we look at the dynamical model
of ACO from a slightly different perspective where pi,j now denotes the probability of
an agent to choose an action j at a certain state i. This view is intuitively equivalent to
the previous where pi,j was manifesting the probability for an ant to visit an edge (i, j).

The dynamical model in Equation 8 clearly resembles close connections to the repli-
cator equations of Q-learning in Equation 15. Both models have similar time derivatives
representing the change in the probability of choosing a certain action by a player. On
one hand, in reinforcement learning this probability, xi in Equation 15, depends on the
difference between theQ values for choosing the action i compared to that of picking all
the others, i.e., Q̇i −

∑
k Q̇kxk. On the other hand, in ACO the probability of choosing



an action j in a state i, pi,j in Equation 8, depends on both the change in the pheromone
level for τ̇i,j and on the original pheromone level τi,j , i.e., ˙τi,j

τi,j
−
∑
c

˙τi,c
τi,c

pi,c. The above
observation reflects that the solution to the probability of a certain action in ACO lies in
a higher dimensional space than that of the pheromone space and resembles additional
complexities to Q-learning.

Another important observation is to been seen from a state-locality point of view.
If each state was viewed as an agent by its own, then at this locality each agent, equiv-
alently a state, admits its own replicator dynamics that are described in Equation 8. In
such a setting the relation between swarm intelligence and reinforcement learning be-
comes apparent and clear. Using this state-locality view, Equation 8 could be re-written
in the following format for each state-agent (i, j):

ṗi = αpi

(
Θi −

∑
l

plΘl

)
(17)

Here the dynamics of ACO clearly resemble those of Q-learning whereby Θi plays the
same role as that of Q̇i in Equation 15. At this stage, it is worth noting two important
characteristics of the attained model: (1) The pheromone levels in ACO play the same
role to theQ values, i.e., the expected total payoff in a reinforcement learning agent and
(2) The variation of the action selection probabilities in ACO resemble more complexi-
ties compared to normal form Q-learning.4 It is important to mention, that although the
swarm intelligence and reinforcement learning seem to admit similar local behaviors
the analysis of the dynamics of ACO is more complex from the global point of view as
these states-agents are dynamically coupled.

A high-level pictorial view of this observation is shown in Figure 2. Under the state-
agent equivalence view each state resembles its own replicator equations. The switching
dynamics between each of the state-agent in ACO are beyond the scope of this paper
and are left for further studying in the future work. A good starting point here is the
work of [25], whereby the authors provided the switching dynamics for piece-wise
linear systems. It is worth noting though, that this work still needs to be extended to suit
the ACO model, as piece-wise linear behavioral models are not a suitable assumption
in this case.

5 Related Work

Ant Colony Optimization has been shown to work empirically in various domains. The-
oretically there have been various successes in providing convergence proofs for the
ACO algorithms, see [3, 6] for a thorough discussion. In the realm of modeling the
dynamics of ACO less research has been done so far. For example [15] model the dy-
namical properties of the ACO algorithm using a deterministic model that assumes an
average expected behavior of the ants. The model is best suited for a specific class
of permutation problems. Another attempt to formalize the dynamics of ACO was pro-
vided in [7]. Gutjahr provides an analytical analysis of the finite-time dynamics of ACO

4 Although this is not investigated in this paper, we speculate that ACO relates to Q-learning
with eligibility traces which will be studied in deeper details in our future work.



Fig. 2. A high level pictorial illustration of the dynamics of ACO at a local state level whereRDi
denoted the replicator dynamics for a certain state-agent i. From the state-agent equivalent view,
each state, is described by its own replicator differential equations dynamics.

based on a fitness-proportional pheromone update rule on arbitrary construction graphs.
In [24], the authors attempt to formalize the dynamics of ACO based on an average re-
ward Markov Decision Process model. It uses a very simple pheromone update rule
ignoring the heuristics used in normal ACO.

The presented paper differs from these works by deriving a more general framework
that describes the dynamical behavior of ACO which is applicable to a wider range of
problems utilizing the full pheromone update rule. We further present, for the first time
to the best of our knowledge, a formal link between swarm intelligence, evolutionary
game theory and reinforcement learning.

6 Conclusions and Future Work

The contributions of this paper are twofold: (1) We presented a formal model of the dy-
namics of one of the most famous swarm intelligence algorithms, namely the replicator
equations of ant colony optimization. (2) We provide a formal link between three well
known learning schemes: swarm intelligence, evolutionary game theory and reinforce-
ment learning. Although the update rules for the behavioral improvement of swarm
intelligence and reinforcement learning appear to be very different, formally there is a
common underlying process for improvement which is driven by the replicator dynam-
ics.

The contributions of this paper range beyond the scope of linking the three different
learning domains together and might serve as a rigorous starting point to the extension
of the replicator dynamics beyond two-player stateless games to multi-players multi-



state games which is considered to be one of the hardest problems in evolutionary game
theory.

The established link provides several opportunities for future work. First, the ant
colony optimization replicator dynamics (ACO-RD) provide a model that can be used to
analyze the convergence behavior of the stochastic algorithm with tools from dynamical
systems. In addition, they can be extended to obtain error bounds on the performance
of the stochastic algorithm. Second, these ACO-RD are inherently multi-state, and we
expect similarities to the dynamics of learning algorithms such as Q-learning with eli-
gibility traces and bee-inspired swarm intelligence algorithms, to which this theoretical
foundation may extend.
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