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1
Introduction

Computers have taken a prominent role in our society and automation has contributed
to an unprecedented wealth in industrialized nations. The world of today is full of
networks and connected systems, varying from stock exchanges and container loading
to political networks [De Mesquita, 2006; Hon-Snir et al., 1998; Nouyan et al., 2009;
Phelps et al., 2006]. These networks link individual humans and computers that influ-
ence each other directly or indirectly through the effect of their actions. The internet
makes it is possible to connect computer systems at low cost. As a result, more and
more automated systems are influencing each other directly by either communicating
information or by taking actions that affect each other. Within this dissertation, each
one of these individuals with an autonomous behavior is called an agent, and their
interactions are studied by analyzing and simulating learning algorithms.

In general, one can distinguish between software agents, such as a simple program
that can be run on a personal computer, or hardware agents, mostly referred to as ro-
bots. An agent can interact with its environment in two essential ways: first, it perceives
the state it is in, e.g., receiving input from sensors that measure data from the real
world, and second it performs actions that may change the state of the environment.
A formal definition is given in Chapter 2.

Another very useful discrimination is the one between adaptive agents and static
computer programs. Computer programs are more prominent and perform pre-
programmed static behaviors that do not change over time. Examples of such static
programs are computer applications, like a text processor, a spread-sheet application,
or control software for industrial robots that simply executes a predefined sequence of
actions. However, adaptive agents are taking more prominent roles as well. Consider
for example an online platform that sells a commodity like airplane tickets with prices
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CHAPTER 1. INTRODUCTION

being automatically adjusted to the demand. The digital vendor is an adaptive agent
that reacts to the demand it perceives from its environment. Similarly, robots may
adapt to their environments. Most prominently, several vacuuming robots have arrived
on the consumer market. These robots are able to adjust their behavior, e.g., route
of the cleaning, according to the environment they are placed in [Choset, 2001]. In
addition, advanced adaptive robots are capable to cope with far more complex envir-
onments, like the Mars rovers that explore a distant planet on our behalf with many
semi-autonomous and adaptive behaviors [Barnes et al., 2006].

The need for adaptive agents is a direct consequence of challenges that arise in
many domains. Pre-programmed behaviors are necessarily designed to perform well in
the environment as it is seen at the time of design. However, the world changes and
so do essential conditions in many applications, often in unforeseeable ways. After the
change, static behaviors likely become obsolete, being inadequate or at least suboptimal.
In contrast, adaptive agents are inherently more versatile and can cope with changing
environments by adjusting behavior based on experience. This improvement of beha-
vior based on experience is exactly the definition of learning [Sutton and Barto, 1998].
Learning becomes particularly important in the presence of several agents, because the
presence of several autonomous behaviors inherently introduces elements of competi-
tion and cooperation [Stone and Veloso, 2000]. In competitive settings, the agent needs
to adapt to a possibly also learning opponent. For cooperative tasks, it may seem like
a plan could be devised in advance that could resolve all possible issues. However, the
initial plan may be invalidated by failure of an individual agent, and if the other agents
do not adapt to changes in the conditions, the system is very brittle. The true bene-
fit of multi-agent systems is a graceful degradation if individual agents break down,
and this benefit requires adaptive agents. Due to the advantages of adaptation, such
as scalability and robustness, multi-agent learning is gaining popularity as a method
for finding high quality behavior in very demanding environments [Panait and Luke,
2005; Shoham et al., 2007; Stone and Veloso, 2000]. It provides a distributed control
mechanism for complex multi-agent systems where agents maximize their individual
payoff or enact a global desired behavior while operating on local knowledge.

1.1 Motivation and scope

In essence, any agent that interacts with another learning agent is facing an environment
that may change over time, i.e., it is dynamic rather than static. The optimal behavior
of the agent depends on the behavior of the other agent, and if the agent seeks to
behave optimally it needs to be adaptive, too. Adaptivity becomes even more essential
if the agents’ interests do not align and there is an element of competition and strategic
behavior involved. An agent that is able to learn a better behavior by adapting to its
opponent has an important competitive advantage over static agents since it can learn
to exploit weaknesses of the opponent and may thereby outperform the competition.

In many real systems (e.g., business trading, sports betting and stock markets)
agents are learning against learning, i.e., the environment faced by the learner
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1.1. MOTIVATION AND SCOPE

includes other learners. This situation may lead to complex interaction patterns and
the resulting system behavior is difficult to predict. Nevertheless, these systems take
a central role in our society, e.g., high frequency automated equity traders account
for over a third of the trading volume in the U.K. and close to three quarters in the
U.S. [Department for Business Innovation and Skill, 2012]. With the rapid adoption of
adaptive technology in critical positions with wide-ranging effects, there is a growing
need for a deeper understanding of the dynamics of multi-agent learning. Such insights
are essential for the prediction of system stability, the regulation of systems like markets,
and the development of agents that perform well in cooperation or competition with
each other.

The focus of this dissertation is on the effect that learning has on the learning pro-
cesses it interacts with. This effect is elicited by studying learning algorithms in strategic
interactions. Depending on the learning algorithms involved, the joint behavior may
settle such that no agent has an incentive to adapt further, or the agents may continue
to adapt to each other for eternity. This dissertation studies the qualitative long-term
behavior of multi-agent reinforcement-learning algorithms, i.e., algorithms that learn
from trial-and-error interactions. Using algorithmic models of learning makes large
numbers of repeatable experiments possible under very controlled settings on the one
hand, and a formal theoretical analysis of the interactions on the other hand. These two
complementary approaches yield deep insights into the dynamics of interactive learning
behavior, and throughout the dissertation analytical insights will be illustrated with
simulation experiments. The insights into these algorithmic learning processes may be
taken as a model of human learning, e.g., the algorithm Cross Learning (formally intro-
duced in Section 2.2.1) has been devised to match data of human learning [Cross, 1973].
In addition, the increased adoption of adaptive agents makes their understanding crucial
for well-behaved real systems, e.g., on May 6, 2010 the Dow Jones industrial average
dropped more than 600 points within minutes, and then recovered rapidly [Bowley,
2010]. This event, known as the Flash Crash of 2010, has been attributed to the impact
of autonomous trading and its cascading effects [Bowley, 2010; Lauriciella et al., 2010].
The prominent role of learning agents, e.g., in equity and futures contracts trading,
makes the study of learning algorithms in strategic interactions not only a model of
human learning but also an engineering goal in itself.

Multi-agent learning is a challenging problem and has recently attracted increased
attention by the research community [Busoniu et al., 2008; Shoham et al., 2007; Stone,
2007; Tuyls and Parsons, 2007]. Learning in multi-agent environments is significantly
more complex than single-agent learning, since the optimal behavior to learn depends
on other agents’ policies. These policies are in turn changed according to the other
agents’ learning strategies, which makes the first agent’s learning goal a moving tar-
get. All agents face this situation, while chasing their own dynamic learning goal they
directly influence and move the learning goals of other agents. This makes predicting
the behavior of learning algorithms in multi-agent systems difficult. More formally,
the environment may be in a set of states, and the state transitions are influenced
by the choices of all agents. Thus, each agent faces a non-stationary environment in
which the Markov property does not hold, i.e., information available to the agent does
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CHAPTER 1. INTRODUCTION

not fully specify the state transition probabilities, because they depend on the con-
cealed policies of the opponents. Unfortunately, many proofs of convergence to op-
timal policies in the single-agent learning literature depend on the Markov property
and thus become inapplicable in multi-agent settings. This limits the theoretical back-
bone available for multi-agent learning. In contrast to single-agent learning, which has
been widely studied both experimentally [Van den Herik et al., 2007] and theoretic-
ally [Auer, 2002; Kaelbling et al., 1996; Watkins and Dayan, 1992], the understanding
of multi-agent learning is still rather immature [Shoham et al., 2007; Stone, 2007].

1.2 Related work

This section gives a brief outline of the different streams of related work. A far more
comprehensive overview is presented in Chapter 2.

Strategic interaction of several autonomous agents is the classical subject of game
theory, which captures the strategic conflict of interests formally in a game [Gibbons,
1992]. A game has a number of players and each player has a number of strategies
to choose from. In addition, each player has a payoff function over the outcomes of
the game, which assigns a numerical payoff value to the desirability of each possible
strategy constellation. The focus of classical game theory is to elicit strategic properties
that are inherent to the game. It is assumed that all players are capable and willing
to compute and enact their best possible strategy — one that maximizes the players’
payoff values given the information available to them. This assumption is called perfect
rationality. Rationality and the focus on game properties rather than players is central
to classical game theory; as a corollary, classical game theory is less concerned with
the process of how players find their strategies. In contrast, multi-agent learning is
primarily concerned with how players reach good strategies. In the analysis of learning
behavior, some game properties are used to relate the learning behavior to rationality
or optimality.

Multi-agent learning survey papers and publications at agents and machine learn-
ing conferences make clear that the number of multi-agent learning algorithms to
choose from is constantly growing [Abdallah and Lesser, 2008; Blum and Mansour,
2007; Busoniu et al., 2008; Hu and Wellman, 2003; Panait and Luke, 2005]. Many
domain-specific problems are tackled by modifying or refining the learning algorithms
in question for the task at hand. An overview of well-established multi-agent learning
algorithms with their various purposes is given in [Busoniu et al., 2008], which demon-
strates the need for a comprehensive understanding of their similarities and differences.
The diversity of learning algorithms makes it imperative to specify the assumptions
(learning bias) [Crandall et al., 2011]. These assumptions are particularly diverse with
respect to what information each agent observes, be it only their own reward or also
including other agents’ actions and possibly rewards. Also, the full payoff function may
be available to an agent ahead of playing the game. In this work, the agents only ob-
serve their own payoffs and are able to remember the actions that were taken. The
payoff function is not available ahead of the game, since that is hardly ever the case in
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realistic applications. Neither does the agent observe the number of opponents or the
actions taken by them. This makes reinforcement learning an applicable model for a
variety of task domains [Sutton and Barto, 1998; Tuyls and Parsons, 2007]. Reinforce-
ment learning seeks successful behavior through trial-and-error interactions with the
environment. However, contemporary reinforcement-learning algorithms often feature
a number of parameters that require tuning, a cumbersome task.

Evolutionary game theory has been linked to reinforcement learning and
provides useful insights into learning dynamics [Börgers and Sarin, 1997; Gintis, 2009;
Tuyls et al., 2006, 2003]. In particular, this link has provided insights into the dynam-
ics and convergence properties of current state-of-the-art multi-agent reinforcement-
learning algorithms such as Q-learning [Wunder et al., 2010]. It makes it possible to
study the resilience of equilibria, visualize the basins of attraction and fine tune para-
meters.

This dissertation studies multi-agent learning dynamics formally and is based on
two branches of literature that can be identified based on their respective assumptions
and premises. The first branch assumes that the gradient of the payoff function is
known to all players, who then update their policy based on Gradient Ascent. Notable
algorithms in this branch include Infinitesimal Gradient Ascent (IGA) [Singh et al.,
2000], the variation Win or Learn Fast IGA (WoLF) [Bowling and Veloso, 2002] and
the Weighted Policy Learner [Abdallah and Lesser, 2008]. The second branch is con-
cerned with learning in unknown environments based on Reinforcement Learning. In
this case, the learning agent updates its policy based on a sequence of 〈action, reward〉
pairs that indicate the quality of the actions taken. Notable algorithms include Cross
Learning [Cross, 1973], Regret Minimization [Klos et al., 2010], and variations of Q-
learning [Kaisers and Tuyls, 2010; Watkins and Dayan, 1992].

Previous work has established that Cross Learning, which implements a simple
learning automaton, converges to the replicator dynamics from evolutionary game the-
ory as the learning update steps become infinitesimally small [Börgers and Sarin, 1997].
The replicator dynamics have also been recognized at the heart of Regret Minimiza-
tion [Klos et al., 2010]. In addition, one of the most popular reinforcement-learning
algorithms, namely Q-learning, has been decomposed into exploration terms that en-
code information gain, and exploitation terms that are equivalent to the replicator
dynamics [Tuyls et al., 2006]. In other words, Q-learning follows dynamics similar to
Cross Learning and Regret Minimization but enriched with exploration. It should be
noted that these initial results for Q-learning were derived from the simplifying as-
sumption that Q-learning would update all actions at every iteration. These dynamics
will therefore be referred to as the idealized model of Q-learning.

1.3 Problem statement

Experiments comparing Q-learning to its idealized evolutionary model reveal two in-
teresting facts: one, the learning trajectories deviate significantly from the predicted
dynamics, and two, the idealized learning dynamics are more desirable than the actual
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CHAPTER 1. INTRODUCTION

learning behavior. More specifically, the behavior of Q-learning varies depending on the
initialization and may temporarily decrease the probability of playing clearly superior
strategies during the learning process1. In contrast, the idealized model prescribes tra-
jectories that monotonically increase the probability for playing game theoretically
preferable actions. A detailed elaboration of the causes for the mismatch is lacking.
Furthermore, the inconsistent behavior of Q-learning has made it difficult to analyze
the long-term behavior in multi-agent settings. It is not proven yet whether individual
Q-learning applied to multi-agent settings would in the long run stabilize to some fixed
behavior, cycle in a repeating pattern or even form chaotic behavior. It is conjectured
but proven that the long term behavior is related to the core solution concept of classical
game theory, namely Nash equilibria.

The evolutionary models for multi-agent learning are so-far only established for
a limited number of algorithms in single-state games. In fact, specific assumptions
have been made to simplify derivations, e.g., Q-learning has been assumed to up-
date all actions at every step, and its exploration parameter has been assumed con-
stant. These assumptions conflict with single-agent learning convergence theory that
suggests decreasing exploration over time in order to find the global rather than a
local optimum [Watkins and Dayan, 1992]. In addition, real applications can seldom
be modeled as single-state games and more naturally relate to multi-state games. These
limitations should be alleviated to make the methodology more applicable to realistic
problems.

Tuning time-dependent parameters, such as exploration of learning algorithms, re-
mains a cumbersome task even given an available evolutionary model. Although the
state-of-the-art techniques are well-suited to study force fields that are constant over
time [Bloembergen et al., 2011; Tuyls et al., 2006], they have not been designed for the
study of learning dynamics that change over time. The trajectory plots and directional
field plots commonly used in the literature are a good basis, but they lack an essential
time dimension. Hence, there is a need for a tool to systematically design and analyze
time-dependent parameters.

As indicated in the previous section, the literature is divided between the study
of infinitesimal gradient ascent and replicator dynamics. However, both streams of
literature appear to pursue a common goal: relating convergence of a dynamical system
to multi-agent learning interactions. However, the commonalities and differences have
not been discussed explicitly yet; it is a gap in the literature that needs to be closed.

The application of an evolutionary analysis to complex real world problems was pi-
oneered by Walsh et al. [Walsh et al., 2002] who introduced a systematic way to capture
payoffs from practical domains. These initial experiments used simple dynamics, but
the method is general and any dynamics can be used in conjunction with the payoffs
gathered in practical domains. In particular, it is worth investigating how exploration
affects the qualitative results of the model.

1 The decrease in probability for playing dominating strategies may commonly be transient, but
examples can be constructed such that it lasts for an arbitrarily long time span (see pessimistic
initializations in Section 3.2.2).
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In sum, interacting agents are ubiquitous nowadays, and these agents in strategic
interactions can be modeled and controlled by multi-agent learning. Learning against
learning produces systems with highly complex dynamics where the emergent collect-
ive behavior is difficult to predict, and our understanding of their stability is limited.
Nevertheless, such systems (e.g., stock markets) are central to modern societies and
have large stakes at risk not only for individuals but for society at large. This disserta-
tion tackles this fundamental gap and contributes to the theoretical framework for the
analysis of multi-agent learning.

1.4 Research questions

The following research questions were distilled from the problem statement. They all
address the problem of how to use and improve the evolutionary framework for the
analysis of reinforcement-learning algorithms in strategic interactions.

1. Why does Q-learning deviate from the idealized model, and how can Q-learning
be adjusted to show the preferable behavior of the idealized model? Chapter 3

2. What is the long term behavior of this idealized Q-learning model; does Q-learning
converge to Nash equilibria? Chapter 3

3. How can the evolutionary framework be extended to more realistic scenarios such
as varying exploration rates or multiple states? Chapter 4

4. Are there alternative perspectives on the time-varying dynamics of multi-agent
learning that enable a systematic design of time-dependent parameters?Chapter 5

5. What are the commonalities and differences between variations of infinitesimal
gradient ascent and the replicator dynamics? Chapter 5

6. How can the evolutionary analysis be applied in realistic domains, and more
specifically what does it reveal about auctions and poker? Chapter 6

Each of these research questions is addressed in the chapter that is indicated in italics.
An explicit answer to each research questions is given in Section 7.1. In answering
these questions, this dissertation supports the thesis that deriving and then scrutinizing
dynamical systems of multi-agent reinforcement learning provides valuable insights into
their strategic interactions.

1.5 Contributions and structure of this dissertation

The chapters of this dissertation can be grouped into three parts: Chapters 1 and 2
provide an introduction and required background knowledge, Chapters 3–6 give a de-
tailed account of the research contributions, and Chapter 7 concludes with a discussion
of the methodology and answers to each research question.
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A survey of state-of-the-art methods for analyzing multi-agent reinforcement learn-
ing and their limitations is given in Chapter 2. They range from empirical competitions
in benchmark problems to analyzing learning dynamics theoretically to determine con-
vergence behavior and deliver performance bounds. Theoretical advances have been
largely due to a dynamical systems approach that links multi-agent reinforcement
learning to evolutionary game theory. However, this framework has several import-
ant limitations that need to be addressed before applying it to real-world problems.
(1) The idealized dynamical model of Q-learning deviates from the average algorithm
behavior, and it assumes a constant exploration rate which conflicts with best practice.
(2) Few algorithms have been described and can be analyzed in this framework. (3)
Much of the literature solely considers single-state environments. (4) The literature is
divided between a discussion of gradient-based and feedback-based algorithms. Each of
these limitations is addressed in this dissertation, and several other insights add to the
literature. Overall, the contributions of this dissertation can be summarized as follows:

The first contribution is an in-depth analysis of the discrepancy between the aver-
age behavior of Q-learning and its idealized dynamical model assuming simultaneous
updates of all actions. Results show that the dynamical system features more rational
learning trajectories than the average behavior of Q-learning. For that reason, I derive
and propose the algorithm Frequency Adjusted Q-learning (FAQ-learning) that inherits
the convergence behavior of the formal model. FAQ-learning is introduced, evaluated
and analyzed in Chapter 3.

The second contribution is a proof of convergence for FAQ-learning in two-action
two-player games, constructed within the evolutionary framework. FAQ-learning con-
verges to stable points, which for low exploration move close to Nash equilibria. In
Battle-of-Sexes type games, a bifurcation of attractors occurs at a critical exploration
rate. This proof of convergence and discussion of FAQ-learning dynamics concludes
Chapter 3.

Contribution number three is an extension of the dynamical systems methodology
to more realistic settings. (1) The model of FAQ-learning is extended to cover time-
dependent exploration rates. (2) Several options for extending the framework to multi-
state environments are discussed. (3) A lenient variant2 of FAQ-learning is derived
that increases the probability to converge to the global optimum in cooperation games.
These three extensions to the dynamical systems framework are presented in Chapter 4.

Fourth and fifth, two new perspectives on multi-agent learning dynamics are intro-
duced: (1) An orthogonal view complements existing analysis, especially when design-
ing time-dependent parameters, (2) The bipartite multi-agent learning literature (focus
on evolutionary vs. gradient ascent dynamics) is unified by proving that multi-agent
reinforcement learning implements on-policy stochastic gradient ascent. These new per-
spectives are presented in Chapter 5 and pave the way for further cross-fertilization
between gradient ascent literature and evolutionary game theory.

Sixth, the viability of this framework is demonstrated by analyzing heuristic
strategies in auctions and poker. In both domains, the analysis provides additional

2 The underlying algorithm is inspired by the idea of forgiving mistakes of other players to coordin-
ate.
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insights in support of expert knowledge. Previous research has shown that the value
of information in auctions may counter-intuitively be not monotonic but rather follow
a J-curve. This finding is confirmed by a variety of more realistic simulations. Results
show that the cost of information has a significant impact on the survival of lower
informed traders and their continuing presence in a trading population. The analysis
of poker strategies confirms expert advice that predicts aggressive strategies to domin-
ate their passive counterparts. The analysis of data from human poker games reveals
that expert advice matches most closely to models that include exploration. Both case
studies, auctions and poker, are presented in Chapter 6.

Finally, the dissertation is concluded in Chapter 7. This last chapter discusses the
findings in relation to other multi-agent learning research, and it provides explicit
answers to the research questions. Some limitations of the deployed methodology are
pointed out and provide a basis for future research.

The dissertation has been organized such that common terminology and required
concepts are introduced and formally defined in Chapter 2. However, the contribution
of chapters (Chapter 3–6) may be read individually by the domain expert. Chapter 4
builds on the algorithm introduced in Chaper 3. Chapters 5 and 6 do not build on but
rather complement the other contribution chapters. The interested reader may thus
choose to either start with an introduction to previous research and open challenges in
Chapter 2, or jump right in with any one of the contribution chapters and refer back
to the formal definitions of Chapter 2 only where necessary.

1.6 Relation to published work

The background knowledge presented in Chapter 2 is based on work of other authors
and cites many relevant sources from literature. The contribution chapters (Chapter 3–
6) are mostly based on work that has already been published at peer-reviewed confer-
ences, workshops or journals. Chapter 3 is based on two publications; the first consti-
tutes Section 3.1–3.2, and the second yields the arguments of Section 3.3:

Section 3.1–3.2 Michael Kaisers and Karl Tuyls. Frequency Adjusted Multi-agent Q-
learning. In van der Hoek, Kamina, Lespérance, Luck, and Sen, editors, Proc. of
9th Intl. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010),
pages 309–315. International Foundation for AAMAS, 2010.

Section 3.3 Michael Kaisers and Karl Tuyls. FAQ-Learning in Matrix Games: Demon-
strating Convergence near Nash Equilibria, and Bifurcation of Attractors in the
Battle of Sexes. In Workshop on Interactive Decision Theory and Game Theory
(IDTGT 2011). Assoc. for the Advancement of Artif. Intel. (AAAI), 2011.

Chapter 4 comprises three extensions to the evolutionary framework. The arguments
given in Section 4.1 and 4.3 have been published while Section 4.2 presents several
extensions to multi-state games of which only Section 4.2.4 is published.

Section 4.1 Michael Kaisers, Karl Tuyls, and Simon Parsons. An Evolutionary Model
of Multi-agent Learning with a Varying Exploration Rate (Extended Abstract).
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In Decker, Sichman, Sierra, and Castelfranchi, editors, Proc. of 8th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2009), pages 1255–1256.
International Foundation for AAMAS, 2009.

Section 4.2.4 Daniel Hennes, Michael Kaisers, and Karl Tuyls. RESQ-learning in
stochastic games. In Adaptive and Learning Agents (ALA 2010) Workshop, 2010.

Section 4.3 Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Empirical and The-
oretical Support for Lenient Learning (Extended Abstract). In Tumer, Yolum,
Sonenberg, and Stone, editors, Proc. of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2011), pages 1105–1106. International Found-
ation for AAMAS, 2011.

Chapter 5 presents two new perspectives that have been proposed in the following
publications.

Section 5.1 Michael Kaisers. Replicator Dynamics for Multi-agent Learning - An
Orthogonal Approach. In Toon Calders, Karl Tuyls, and Mykola Pechenizkiy,
editors, Proc. of the 21st Benelux Conference on Artificial Intelligence (BNAIC
2009), pages 113–120, Eindhoven, 2009.

Section 5.2 Michael Kaisers, Daan Bloembergen, and Karl Tuyls. A Common Gradi-
ent in Multi-agent Reinforcement Learning (Extended Abstract). In Conitzer,
Winikoff, Padgham, and van der Hoek, editors, Proc. of 11th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2012), pages 1393–1394.
International Foundation for AAMAS, 2012.

Section 5.2 Michael Kaisers and Karl Tuyls. Multi-agent Learning and the Rein-
forcement Gradient. In Massimo Cossentino, Michael Kaisers, Karl Tuyls, and
Gerhard Weiss, editors, Multi-Agent Systems. 9th European Workshop, EUMAS
2011, pages 145–159. Lecture Notes in Computer Science, Vol. 7541. Springer,
2012.

Chapter 6 contains the analysis of strategies in the two application domains double
auctions and poker. Both parts are based on a publication.

Section 6.1 Daniel Hennes, Daan Bloembergen, Michael Kaisers, Karl Tuyls, and Si-
mon Parsons. Evolutionary Advantage of Foresight in Markets. In Proc. of the
Genetic and Evolutionary Computation Conference (GECCO), pages 943–949,
2012.

Section 6.2 Marc Ponsen, Karl Tuyls, Michael Kaisers, and Jan Ramon. An evolu-
tionary game-theoretic analysis of poker strategies. Entertainment Computing, 1
(1):39–45, January 2009.

A full list of my publications is given at the end of my dissertation (see page 145).
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2
Background

This chapter introduces concepts from reinforcement learning, game theory, and dy-
namical systems that form the basis of the theoretical framework used throughout
this dissertation. First, the core concepts of reinforcement learning are introduced, and
reinforcement-learning algorithms are presented. Next, the challenges of applying and
analyzing these algorithms in multi-agent settings are discussed. Game theory provides
a framework to capture strategic conflicts, and dynamical systems provides a grasp on
the interactive dynamics. Subsequently, the link between reinforcement learning and
dynamical systems is explained, which ties reinforcement-learning algorithms, learning
dynamics and game theory together. Finally, limitations of state-of-the-art approaches
are pointed out and serve as a departing point for the contributions of this dissertation.

2.1 Reinforcement learning

Reinforcement learning is applicable in environments where behaviors can be evaluated
by trying them, but there may be no or little a priori guidance of what constitutes
good behavior. Reinforcement learning is based on a simple reward signal given as
a response to the sequence of actions that the agent executes. This attribute sets it
apart from other learning paradigms like supervised learning, which requires an explicit
specification of the desired outputs for a set of sample inputs (actions), or unsuper-
vised learning, which has neither an error nor a reward signal to evaluate potential
solutions [Sutton and Barto, 1998]. The existence of a numeric quality score makes it
closest to the field of evolutionary computation, a link that is made explicit by formal
derivations in Section 2.5.
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Consider a simple reinforcement-learning task that some readers may be familiar
with: Suppose you would like your dog to learn to fetch the newspaper. The dog does not
understand any explicit commands, but it does act autonomously and is bound to try
all kinds of things. Whenever the dog shows the desired behavior you can reward it to
reinforce this behavior. It usually drastically speeds up the learning process if reward for
partial achievement of the desired result is given. In this example, the human specifies
the feedback signal for the dog, and the dog is the learning agent. It is possible that
the dog first needs to observe the state of the environment, e.g., whether there is a
newspaper or not. In this case, the reward may be conditional on the state and action,
and different behavior may be rewarded depending on the state. Figure 2.1 depicts
the agent-environment interaction schematically. The learner relates the reward signal
to previously executed actions to learn a behavior that maximizes cumulative future
reward [Sutton and Barto, 1998].

Several repetitions by the trainer are necessary before the optimal behavior is shown
consistently by the learner. This observation is not a flaw of reinforcement learning,
but rather inherent to the exploration of alternative actions that might, as long as
unexplored, still yield unknown higher rewards. In addition, the reward feedback may
be stochastic and several samples of the same action may be necessary to estimate
the expected return. The agent must balance exploiting what is known about good
actions with exploring other actions that have not yet been tried at all or actions
where the expected payoff is still uncertain. This active sampling process has been a
paradigm shift from consulting statistic experts after experiments have been carried out
to an online exploration-exploitation tradeoff [Robbins, 1952]. This tradeoff demands
to balance performing close to optimal with respect to the information that has been
collected in previous interactions with improving certainty of what is good.

2.1.1 The multi-armed bandit problem and regret

The multi-armed bandit problem is a formalization of a basic one-state reinforcement-
learning task. Consider an agent walking into a casino that contains several one-armed
bandits. The agent may choose at each time step t which bandit to draw from, where

Figure 2.1: A schematic depiction of the agent-environment interaction: a state-dependent
feedback is given as a response to the executed action. This illustration is adopted
from published work [Sutton and Barto, 1998].
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time may be of infinite horizon or finite horizon, i.e., t ∈ {1, 2, . . . , tmax} with tmax

some finite integer or t ∈ N. Consider the infinite horizon problem. Each bandit i ∈ A
returns a stochastic payoff Ri according to an unknown underlying distribution. In the
basic model the distributions of rewards are stationary for all arms, i.e., they do not
change over time. The agent seeks to maximize the payoff that it receives, and thus aims
at drawing the bandit with the highest expected return [Weber, 1992]. An elaborate
discussion of variations of this problem is given elsewhere [Gittins et al., 2011].

The behavior of the agent is described by the policy π : N → A, where π(t) = i

assigns action i to time step t. The agent seeks to find the policy π that maximizes
his cumulative future reward. The cumulative future reward is taken as the discounted
sum of returns, where γ is the discount factor with 0 6 γ 6 1:

∞∑

t=0

γtRπ(t).

This model subsumes the undiscounted infinite horizon problem with γ = 1. While
discounting is optional in finite-horizon problems, not discounting leads to the following
problem in infinite-horizon problems: two policies that play optimally from different
points in time give rise to the same limit reward, since the optimal reward becomes
dominant and the sum unbounded. Nevertheless, the policy that arrives at optimal
behavior earlier is preferable. For 0 < γ < 1, the sum of rewards is bounded and
the value of γ can be chosen to tune the optimization from far-sighted to myopic. If
γ = 0, the agent only optimizes the immediate reward. This discrimination becomes
particularly important in multi-state optimization, as described in the following section.

Whenever the agent draws an arm other than the best one it incurs a certain
regret. Formally, regret is defined as the difference between the obtained payoff and
the maximal expected payoff that could have been achieved by behaving optimally right
from the start, i.e., pulling the arm with the highest expected value R∗ = maxi E [Ri]

every time. Thus, in an auxiliary formulation to maximizing the cumulative reward,
the agent tries to minimize its regret. Formal regret bounds have been one driving
factor for the development of new reinforcement-learning algorithms for multi-armed
bandit type problems [Agraval, 1995; Audibert et al., 2010; Auer, 2002; Auer et al.,
2002; Jaksch et al., 2010; Kaelbling et al., 1996]. However, these regret bounds are hard
to obtain [Kaelbling et al., 1996]. In multi-agent settings, reward distributions become
non-stationary from the agent’s point of view and developing a meaningful notion of
regret becomes difficult.

In practice, it may be sufficient to find a behavior that is almost as good as
the optimal behavior. This concept is formally developed in Probably Approxim-
ately Correct (PAC) learning [Valiant, 1984]. It answers the following question: How
many interactions are necessary to find ǫ-optimal behavior with probability of at least
1− δ [Even-dar et al., 2002; Kaelbling et al., 1996]. PAC bounds are available for some
algorithms in multi-armed bandit problems [Even-dar et al., 2002] and in Markov de-
cision processes [Strehl et al., 2006].

Nowadays, insights into the multi-armed bandit problem find wide application in
online advertisement. Ad engines need to select an ad to display to a specific user
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embedded in a website. The user behavior, i.e., clicking an ad or not, provides feedback
to the ad engine, which seeks to display the ads with the highest revenues. In practice,
many other constraints need to be taken into account, such as the limit in ad placement
budgets purchased by clients from the ad engine, and the fact that a user navigates
through websites and the choice of ads on a previous page may influence the expected
payoffs for ads on following pages. These limitations provide a further incentive for
the ad engine to explore alternative ads, and to model the problem as a multi-step
optimization problem. The following section presents a framework for such a multi-
step optimization.

2.1.2 Markov decision processes

Markov decision processes (MDPs) provide a formal model of agent-environment inter-
actions in which the outcome is influenced by both stochastic influences and the actions
of the agent [Howard, 1960; Puterman, 1994]. They describe discrete time stochastic
control processes, where at each time step t, the process is in some state s, and the
agent chooses to play action i of the available actions in state s. In response to this
action, the process stochastically moves to a new state s ′ with probability Ti(s, s

′), and
provides a reward of Ri(s, s

′) to the agent. Thus, a Markov decision process is a 4-tuple
(S,A(·), T.(·, ·),R.(·, ·)), where S is a set of states, A(s) is the set of actions available in
state s, Ti(s, s

′) specifies the transition probability, i.e., the probability of moving from
s to s ′ after selecting action i, and Ri(s, s

′) denotes the reward given after selecting
action i in state s and successfully moving to state s ′. The multi-armed bandit prob-
lem presented in the previous section is the special case of a one-state Markov decision
process.

It is worth noting that Ti(s, s
′) is independent of any previous states, i.e., the

stochastic state transitions of the process solely depend on the current state, which is
also called the Markov property. As a consequence of this fact, the optimal policy
for this problem can be written as a function of the state only. The behavior of the
agent is described by the policy π : S → A, where π(s) = i assigns action i to state s.
The agent seeks to maximize the discounted sum of rewards, where 0 6 γ 6 1 is the
discount factor:

∞∑

t=0

γtRπ(st)(st, st+1).

The value function Vπ(s) denotes the value of being in state s and executing policy
π. It can be expressed recursively in relation to the values of all other states s ′:

Vπ(s) =
∑

s′

Tπ(s)(s, s
′)
[

Ri(s, s
′) + γVπ(s ′)

]

.

The optimal value function V∗(s) = maxπ Vπ(s) indicates the value of the state given
the optimal policy. The optimal policy π∗(s) chooses the action with the maximal
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expected reward at each state:

π∗(s) = argmax
i

{
∑

s′

Ti(s, s
′)
[

Ri(s, s
′) + γV∗(s ′)

]

}

. (2.1)

If the Markov decision process is known, i.e., the transition and reward functions are
given, two main approaches can be used to compute the optimal policy: Value iteration
or policy iteration. Value iteration incrementally improves estimates of the value
function using the Bellman equation [Bellman, 1957]:

V(s)← max
i

{
∑

s′

Ti(s, s
′)
[

Ri(s, s
′) + γV(s ′)

]

}

.

This update rule is repeated for all states until convergence, i.e., until the left hand
side equals the right hand side up to a marginal error. Once the optimal value function
is found, the optimal policy can be computed from it using Equation 2.1. Policy
iterationmaintains an estimate of a good policy and directly updates it for incremental
improvements [Howard, 1960]. However, since the reward and transition functions are
usually not known to the agent [Sutton and Barto, 1998], neither approach is discussed
in detail here. Section 2.2 describes reinforcement-learning algorithms that find good
policies without having direct access to the transition and reward functions.

2.1.3 Stochastic games

Stochastic games provide a model for strategic interactions of several players. They
generalize Markov decision processes to multiple agents and extend repeated games
to multiple states [Littman, 1994; Neyman, 2003]. First, consider a repeated normal
form game as a special case of a one-state stochastic game. A normal form game is
defined by the tuple (N,A,R). All players p ∈ N simultaneously have to choose from
their set of available actions Ap, where A = A1 × . . .×An. Each player p has a payoff
function Rp

~a over the joint actions ~a = (a1, . . . ,an), where ap denotes the action chosen
by player p. For two-player games, the payoff function can be given in a bi-matrix form.
Normal form games are the subject of classical game theory and an example is given
and discussed in Section 2.4.1. If the players encounter each other several times in the
same normal form game it is called a repeated game.

A stochastic game is a stochastic process that moves between several states, and
the players play a specific normal form game in each state. It is defined by the tuple
(S,N,A, T ,R), where

• S is a set of states

• N is a set of n players

• A = A1 × . . .×An, where Ap is a finite set of actions available to player p
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• T : S×A× S→ [0, 1] is the transition probability function, where T~a(s, s
′) is the

probability of the process moving to state s ′ after joint action ~a has been selected
in state s

• R = R1, . . .Rn, where Rp : S × A → R is a real-valued payoff function for player
p.

At each stage t, the game is in a specific state s ∈ S and each player p ∈ N simultan-
eously chooses an action ap, such that ~a = (a1, . . . ,an) is the joint action. The game
stochastically moves into the next state s ′ according to the transition function T~a(s, s

′),
and the payoff function R

p
~a(s, s

′) determines the reward to each player p [Shapley, 1953;
Shoham and Leyton-brown, 2009].

2.2 Reinforcement-learning algorithms

Reinforcement-learning problems have been tackled by a variety of approaches. One
can categorize algorithms based on the information they require to be available to
them [Crandall et al., 2011; Kaelbling et al., 1996].Model-free algorithms learn a policy
without learning a model of the environment. In contrast, model-based algorithms are
given or learn a model of the environment approximating state transition and reward
functions, and subsequently use this model to derive a good policy. In order not to con-
volute the interactive learning process with model building artifacts, this dissertation
solely considers model-free algorithms. Since the focus is on a deep understanding of
the interactive influences of learning, the scope of this dissertation is restricted to three
established general learning algorithms that are not tailored to a specific domain. For
a comprehensive overview of reinforcement-learning algorithms the interested reader
may consult more comprehensive reviews [Busoniu et al., 2008; Kaelbling et al., 1996].

The concepts in the previous section could be conveniently discussed using a de-
terministic policy π(s) that assigns a single action to each state s. This section intro-
duces algorithms that gradually improve the policy, which requires the introduction of
a stochastic policy. The stochastic policy x assigns probability xi(s) to play action i in
state s. This rule implies ∀i, s : 0 6 xi(s) 6 1 and ∀s :

∑
i xi(s) = 1. The deterministic

policy π can be expressed as a special policy, where ∃i : xi(s) = 1.

2.2.1 Cross learning

One of the most basic reinforcement-learning algorithms is Cross Learning [Cross,
1973], which originates from the field of psychology to describe observations of human
learning behavior. It can be used to describe learning in multi-armed bandit problems
or single-state games. An extension to multiple states using networks of learning al-
gorithms is given in Section 4.2.4. At each iteration, the behavior of the agent can
be described by the policy x = (x1, . . . , xk), which indicates how likely any available
action is to be played. The algorithm depends on the reward Rj given in response to
action j. However, it is the same no matter if rewards follow a simple distribution (like

16



2.2. REINFORCEMENT-LEARNING ALGORITHMS

in multi-armed bandit problems) or whether they are dependent on a joint action or
state, hence notation for any further dependencies is omitted. One pure strategy is
drawn according to the probabilities and the agent updates its policy x based on the
reward Rj received after taking action j:

xi(t+ 1)← xi(t) +

{
Rj − Rjxi(t) for i = j
−Rjxi(t) for all i 6= j.

(2.2)

This update maintains a valid policy as long as the rewards are normalized, i.e., as long
as 0 6 Rj 6 1. At each iteration, the probability of the played action j is pushed towards
its payoff with the aim of increasing the probability of actions with high expected payoff
and decreasing the probability of playing worse strategies. In vector notation,

x(t+ 1)← (1− Rj) x(t) + ejRj,

where ej is the jth unit vector with all elements zero except for a one at the jth

position. The term 1 − Rj maintains the probability vector by scaling the previous
policy down, such that Rj can be added to the probability of the played strategy. Thus,
at each iteration the probability of the selected action is increased unless the payoff is
exactly zero. It can be observed that two factors influence the speed of each update:
(1) actions with higher payoffs give rise to a larger step in the policy, and (2) actions
that are selected more often are reinforced more frequently. The effect of these factors
also become apparent in the learning dynamics derived in Section 2.5.1.

Cross learning is closely related to Finite Action-set Learning Automata
(FALA) [Narendra and Thathachar, 1974; Thathachar and Sastry, 2002]. In particular,
it is equivalent to a learning automaton with a linear reward-inaction (LR−I) scheme
and a learning step size of 1, and all insights to Cross learning thus equally apply to
this type of learning automaton.

2.2.2 Regret minimization

The notion of Regret Minimization (RM) forms the basis for another type of
reinforcement-learning algorithm. Like Cross learning and learning automata, it has
been defined for multi-armed bandit settings or one-state games, and can be extended
to multiple states through a network of learning algorithms as discussed in Section 4.2.4.
The Polynomial Weights algorithm assumes the best possible payoff is known in hind-
sight, such that the learner can calculate the loss (or regret) lj of taking action j

rather than the best action in hindsight as lj = R∗ − Rj where Rj is the reward re-
ceived, and R∗ is the optimal reward, i.e., the maximal reward that could have been
achieved [Blum and Mansour, 2007]. The learner maintains a set of weights w for its
actions, updates the weight of the selected action j according to the perceived loss, and
derives a new policy by normalization:

wi(t+ 1)←

{
wi(t) [1− αli(t)] for i = j
wi(t) for all i 6= j.

xi(t)←
wi(t)

∑
j wj(t)

(2.3)

17



CHAPTER 2. BACKGROUND

Let 1 = (1, . . . , 1) denote a vector of length k, where k is the number of actions. In
vector notation, the weight update reads as follows:

w(t+ 1)← w(t) (1− ejαlj(t)) .

Like Cross learning, this algorithm ensures a valid policy as long as the rewards (and
thereby losses) are normalized. However, it requires more information, since it needs
to know the optimal reward in hindsight. Note that for consistency with the literature,
Section 2.5.2 gives the learning dynamics under the assumption that all actions are
updated at every step [Klos et al., 2010]. This idealized variant of regret matching
requires not only the optimal reward but also a sample reward for all actions not
taken. The idealized update in vector notation becomes:

w(t + 1)← w(t) (1− αl(t)) ,

where l(t) = (l1(t), . . . , lk(t)) is the vector bearing a loss corresponding to each action
that could have been taken.

2.2.3 Q-learning

Arguably the most influential reinforcement-learning algorithm is Q-
learning [Sutton and Barto, 1998; Watkins and Dayan, 1992]. Q-learning is an
algorithm that learns good policies for Markov decision processes without having
access to the transition and payoff functions. It can also be applied to stochastic
games, in which case the reward also depends on actions chosen by other players (see
Section 4.2).

Recall that in Markov decision processes, at each time step t the learner selects an
action j from its available actions in state s and the process stochastically moves into
state s ′, providing reward Rj(s, s

′) to the agent in return. Q-learning incrementally
improves its estimation Qj(s, t) of the sum of discounted future rewards for taking
action j in state s and following a greedy policy thereafter. The action-value is updated
according to the following equation, known as the Q-learning update rule, where α

denotes the learning rate and γ is the discount factor:

Qj(s, t+ 1)← Qj(s, t) + α

(

Rj(s, s
′) + γmax

i
Qi(s

′, t) −Qj(s, t)

)

. (2.4)

The max operator is used to bootstrap the value of the greedy policy, i.e., the estimate
of the best action in the subsequent state is used to update the estimate in this state.
Since the executed policy may differ from the policy whose value is estimated, this
method is called off-policy. In the Q-learning variant SARSA (state-action-reward-
state-action), the Q-values approximate the value of the executed policy by sampling
the next Q-value. SARSA is thus on-policy.

Qj(s, t + 1)← Qj(s, t) + α (Rj(s, s
′) + γQi(s

′, t) −Qj(s, t)) ,

where action i is drawn according to the policy xi(s
′) in the following state s ′.
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Both Q-learning and SARSA derive the policy from the Q-values. Let
x (Q·(·, ·), . . .) = (x1, . . . , xk) be a function that associates any set of Q-values with
a policy, where k is the number of actions, and xi denotes the probability of selecting
action i, such that xi > 0 and

∑k
i=1 xi = 1. Various schemes exist to derive the policy,

which mainly differ in the way they balance exploration and exploitation. The most
prominent examples of such policy-generation schemes are the greedy, ǫ-greedy and
the Boltzmann exploration scheme [Sutton and Barto, 1998]. The greedy policy selects
the action with the highest Q-value with probability 1. It does not explore at all and is
prone to getting stuck in local optima [Sutton and Barto, 1998]. The ǫ-greedy policy
chooses the action with the highest Q-value with probability 1 − ǫ and a random ac-
tion with probability ǫ. This policy does explore, but it drastically changes the policy
when another action attains the highest Q-value. In contrast, Boltzmann exploration
smoothly balances exploration and exploitation by way of a temperature parameter τ.
It is defined by the softmax activation function, mapping Q-values to policies:

xi
(

Q(s, t), τ
)

=
eτ

−1Qi(s,t)

∑
j e

τ−1Qj(s,t)
. (2.5)

The parameter τ lends its interpretation as temperature from the domain of physics.
High temperatures lead to stochasticity and random exploration, selecting all actions
almost equally likely regardless of their Q-values. In contrast, low temperatures lead
to greedy policies with high exploitation of the Q-values, selecting the action with
the highest Q-value with probability close to one. Intermediate values prefer actions
proportionally to their relative competitiveness. In many applications, the temperature
parameter is decreased over time, starting with high exploration and eventually exploit-
ing the knowledge encoded in the Q-values. The policy-generation function ensures a
valid policy independent of the reward range, and does not require the reward function
to be known or normalized.

Section 2.5.3 presents a simplified model of one-state Q-learning assuming a con-
stant temperature for analytical tractability [Tuyls et al., 2006, 2003]. In addition, de-
rivations assume all actions would be updated at every time step. Chapter 3 critically
analyzes these idealized Q-learning dynamics and introduces the variation Frequency
Adjusted Q-learning that perfectly adheres to the idealized learning dynamics while
only updating one action at a time. The learning dynamics are generalized to time-
dependent temperatures in Section 4.1, and extended to multiple states in Section 4.2.

2.3 Reinforcement learning in strategic interactions

In multi-agent systems, several autonomous agents have to react to each other strategic-
ally, possibly pursuing conflicting goals. Stochastic games provide a reward signal to the
individual learner and thereby make it possible to extend techniques from single-agent
learning for multi-agent settings. The following section delineates why learning in multi-
agent settings is significantly more complex than single-agent learning. Subsequently,
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the approach that is followed throughout this dissertation is framed by setting it apart
from related multi-agent reinforcement-learning approaches.

2.3.1 Challenges of multi-agent reinforcement learning

In multi-agent settings, the environment is only partially observable for each agent,
since each agent introduces its own variables that are hidden from other agents, like
its policy and auxiliary internal states. Also, an agent cannot necessarily observe the
actions taken by other agents. These properties make it difficult for the agent to dis-
tinguish between stochasticity of the environment and the influence of other agents.

Algorithms that have been developed for single-agent learning can be applied
to multi-agent settings. However, proofs of convergence in single-agent learning
commonly depend on the Markov property and do not hold in the multi-agent
case [Kaelbling et al., 1996]. More precisely, if the Markov game is in some state s, the
state transition T~a(s, s

′) to another state s ′ depends on the joint action ~a. However,
the actions taken by other agents are not necessarily observable or may be determined
by a new stochastic rule, thus the state transition of the environment depends on more
information than is available to the agent, and the environment is not Markovian from
the agent’s point of view.

Due to the distributed nature of multi-agent systems, centralized learning and con-
trol is usually not feasible—no agent has the means or authority to command other
agents. Distributed reinforcement learning on the other hand is a much better fit to
the demands of many applications, as each agent may learn from experience how to
cooperate or to compete [Weiß, 1995]. The next section gives more details on how
reinforcement learning deals with the above-mentioned challenges.

2.3.2 Multi-agent reinforcement learning

A variety of algorithms have been specifically devised for multi-agent learning, and they
vary largely in their assumptions, especially concerning the observability of states and
actions of other agents [Busoniu et al., 2008; Crandall et al., 2011; Panait and Luke,
2005; Shoham et al., 2007]. A survey of cooperative learning in multi-agent systems
is available [Panait and Luke, 2005]. It summarizes not only reinforcement-learning
techniques but also concepts from evolutionary computation, game theory, complex
systems, and robotics. The authors identify two distinctive categories of approaches
they name team learning, where a single learner seeks a joint solution to multi-agent
problems, and concurrent learning, using multiple learners simultaneously. Team learn-
ing requires the ability of aggregating several independent entities under a joint action
space learner. This organization may be a viable option for cooperative settings where
agents are benign, but it does not fit the more general setting where agents have in-
dividual and possibly conflicting interests. In addition, the essence of Learning against
Learning is in the interaction between learning processes rather than between agents,
and for the sake of analysis each joint action learner represents a single learning pro-
cess. The scope of this dissertation is restricted to concurrent individual learners, since
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it is specific enough to elicit the essential interaction between learning processes, and
general enough to be applicable in both cooperative and competitive settings.

Besides differentiating cooperative and competitive learning, one can cat-
egorize algorithms based on the information available to the individual agents.
This information may include observing other agents’ state to improve co-
ordination [e HauwereDE HAUWERE et al., 2011], or observing other agents’ ac-
tions [Hu and Wellman, 2003; Littman, 1994]. Several algorithms have been proven
to converge to Nash equilibria in self-play, although proofs are commonly lim-
ited to two-player two-action games. They do so under various information re-
quirements [Crandall et al., 2011]. Minimax Q-learning observes the actions of other
agents [Littman, 1994]. Nash Q-learning requires to observe other agents’ rewards
and actions, but nevertheless lacks strong convergence guarantees [Hu and Wellman,
2003]. Friend-or-Foe Q-learning improves upon these guarantees under similarly strong
assumptions, showing that it converges to exactly those Q-values that Nash Q-
learning ought to converge to [Littman, 2001]. The variation Win-or-Learn-Fast In-
finitesimal Gradient Ascent (WoLF-IGA) requires the specification of at least one
Nash equilibrium payoff and observes not the reward feedback but the gradient
of the reward [Bowling and Veloso, 2002]. Weighted Policy Learning (WPL) does
not need the Nash equilibrium payoff but still requires the gradient of the re-
ward [Abdallah and Lesser, 2008]. In contrast to these approaches, Chapter 3 provides
a proof of convergence for a new variation of Q-learning named Frequency Adjusted
Q-learning, which only requires minimal information, i.e., the same information that
would be available in single-agent learning, namely the agent’s own actions and rewards.

Inspired by the PAC framework, performance criteria have been set forward
for multi-agent settings, with the aim of convergence, targeted optimality and
safety [Chakraborty and Stone, 2010; Powers and Shoham, 2004]. This framework re-
quires algorithms to converge to a best response for a set of target opponents, and
provide a safety payoff to all other opponents. The target opponents must include
self-play, which implies that the algorithm needs to converge to a Nash equilibrium in
self-play. Unfortunately, these guarantees are hard to attain, and have so far only been
achieved for games that are known by the agent, and where actions of all agents can
be observed [Chakraborty and Stone, 2010; Powers and Shoham, 2004].

This dissertation is concerned with the analysis of algorithms that are based on
minimal information, although idealized assumptions are sometimes made to make the
dynamics tractable for a formal analysis. Learning with minimal information means
that the agents can only recall their own actions and observe their own rewards, while
the actions and rewards of other agents are unobservable [Crandall et al., 2011]. For this
purpose, the algorithms presented in Section 2.2 are applied to stochastic games. The
restriction to minimal information makes the algorithms applicable in many realistic
applications.
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2.4 Game theory and strategic interactions

Game theory studies games as formal models of strategic interactions. In contrast to
reinforcement learning, which evolves around the agent’s process of improving its be-
havior from experience, classical game theory assumes rational players that arrive at
their strategy by reasoning. Rationality means that an agent is capable and willing
to compute its best possible policy given full or partial knowledge about the game
at hand. The next section introduces several key concepts from classical game theory,
namely the best response, Nash equilibria and Pareto optimality. Perfect rationality is
criticized for not being attained in reality, where resource constraints limit the com-
putability and confounding factors limit adherence to rational behavior. Evolutionary
game theory replaces the rationality assumption by concepts from evolutionary bio-
logy, such as natural selection and mutation, and is explained in Section 2.4.2. These
biological operators are reflected in variations of the replicator dynamics that describe
the change of a population over time. The evolutionary dynamics can be analyzed by
stability criteria that are related to Nash equilibria of classical game theory. Finally,
Section 2.4.3 explains how payoffs can be measured from practical applications to make
them available for an evolutionary analysis.

2.4.1 Classical game theory

Classical game theory studies strategic conflicts between intelligent reasoning
agents [Gibbons, 1992]. These conflicts are modeled as games, such as normal form
games introduced in Section 2.1.3. Recall that a normal form game is defined by the
tuple (N,A,R).

• N is the set of n players, with n some finite integer.

• A = A1×. . .×An is the joint action space, where Ap is the set of actions available
to player p,

• and R = R1 × . . . × Rn, where Rp : A 7→ R denotes the payoff function of player
p, i.e., for any joint action ~a, Rp

~a returns the payoff to player p.

The players are assumed to choose their actions simultaneously and independently.
Consider the special case of a one-state two-player game, where the payoffs can be

given in a bi-matrix form (R,C) that gives the payoff for the row player in R and the
column player in C, as indicated in Figure 2.2 (a).

Policy

As normal form games are stateless, the behavior of each player can be described by
a probability vector xp = (x

p
1 , . . . , x

p
k), that assigns a probability x

p
i to each action i.

This probability vector is also called a policy or a mixed strategy.

xp : Ap → [0, 1] such that
∑

i∈Ap

x
p
i = 1.
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Let ~x = (x1, . . . , xn) denote the joint policy or mixed strategy profile. Furthermore, let
x−p = (x1, . . . , xp−1, xp+1, . . . , xn) denote the same profile without player p’s policy.
This notation is useful for the description of best responses and Nash equilibria.

The superscript notation is only used for the general case of n-player games.
Throughout this dissertation policies in two-player games will be denoted with x rather
than x1 for the row player, and y rather than x2 for the column player. For two-action
games, such as the examples given in Figure 2.2, the policies can be described by
x = (x1, 1− x1) and y = (y1, 1− y1), and the joint policy is fully characterized by the
pair (x1,y1).

Expected payoff

The expected payoff vp (xp|x−p) for playing policy xp against the set of opponents’
mixed strategies x−p can be computed from the sum over the payoffs of all possible
pure strategy profiles ~a ∈ A, multiplied by their probability, where xqaq

denotes the
probability of player q to play action aq:

vp
(

xp|x−p
)

= E(Rp|~x) =
∑

~a∈A

R
p
~a

∏

q∈N

xqaq
.

The expected payoff for playing x1 = 1 (row player, Defect) against y1 = 1
2
(column

player, mixing both actions equally) in the Prisoners’ Dilemma given in Figure 2.2 (b)
is v1(x|y) = v1

(

(1, 0), (1
2
, 1
2
)
)

= 3. The expected payoff in this case for playing x1 = 0

(Cooperate) is v1(x|y) = v1
(

(0, 1), (1
2
, 1
2
)
)

= 3
2
.

Best response

The best response is the set of policies that have the maximal possible reward given
all other players’ policies. Due to the rationality assumption, all players are assumed
to pick the best action available to them. A mixed strategy xp is a best response of
player p if there is no other mixed strategy y that would lead to a higher reward for
this player, given that all other players’ strategies x−p remain the same.

BR(x−p) = xp iff ∀y : vp
(

xp|x−p
)

> vp
(

y|x−p
)

.

(

R11,C11

R21,C21

R12,C12

R22,C22

)

(a) general payoff bi-matrix game

D
C

D C
(

1, 1∗

0, 5
5, 0
3, 3

)

(b) Prisoners’ Dilemma

Figure 2.2: An example of the general payoff bi-matrix game for one-state two-player two-
action games, and the payoffs for the Prisoners’ Dilemma with actions Cooper-

ate (C) and Defect (D). The Nash equilibrium is marked by an asterisk (∗).
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The best response of the row player to an opponent playing y1 = 1
2
in the Prisoners’

Dilemma given in Figure 2.2 (b) is BR(y) = (1, 0), i.e., Defect. In fact, Defect is a best
response to any strategy in the Prisoners’ Dilemma; it is a dominating strategy.

Nash equilibrium

A core solution concept in game theory is the Nash equilibrium. A Nash equilibrium
is a joint policy ~x∗ for which no player has an incentive for unilateral deviation, i.e.,
every strategy x∗p is a best response to x∗−p,

x∗p = argmax
xp

vp(xp|x∗−p).

The condition can be expressed in matrix notation for two-player games. Let ei denote
the ith unit vector. (x∗,y∗) comprises a Nash equilibrium iff ∀i : x∗Ry∗ > eiRy

∗ and
x∗Cy∗ > x∗Cei. The Prisoners’ Dilemma given in Figure 2.2 (b) indicates the Nash
equilibrium x1 = 1,y1 = 1 with an asterisk.

Nash equilibria are the primary concept to derive rational behavior in competitive
games. For cooperative games, Pareto optimality is of primary interest.

Pareto optimality

A strategy profile ~x Pareto dominates ~x ′ if and only if all players obtain at least the
same reward and at least one player receives a strictly higher reward when ~x is played.

~x Pareto dominates ~x ′

iff ∀p∃q : vp(~x) > vp(~x ′)∧ vq(~x) > vq(~x ′).

A strategy profile ~x is Pareto optimal if it is not Pareto dominated.

2.4.2 Evolutionary game theory

Evolutionary game theory takes a rather descriptive perspective, replacing hyper-
rationality from classical game theory by the concept of natural selection from bio-
logy [Smith, 1982]. It studies the population development of individuals belonging to
one of several species. The two central concepts of evolutionary game theory are the rep-
licator dynamics and evolutionary stable strategies [Taylor and Jonker, 1978]. The rep-
licator dynamics presented in the next subsection describe the evolutionary change in
the population. They are a set of differential equations that are derived from biological
operators such as selection, mutation and cross-over. The evolutionary stable strategy
describes the resulting asymptotic behavior of this population, and several concepts
of stability are presented subsequently. For a detailed discussion of evolutionary game
theory, the interested reader may consult one of several survey papers [Hirsch et al.,
2004; Hofbauer and Sigmund, 2002].

24



2.4. GAME THEORY AND STRATEGIC INTERACTIONS

Replicator dynamics

The replicator dynamics from evolutionary game theory formally define the population
change over time. A population comprises a set of individuals, where the species that an
individual can belong to relate to pure actions available to a learner. The distribution
of the individuals on the different species can be described by a probability vector
x = (x1, . . . , xk) that is equivalent to a policy for one player, i.e., xi indicates the
probability of playing action i, or the fraction of the population that belongs to species
i. Multi-population models relate one population to each agent’s policy.

The evolutionary pressure by natural selection can be modeled by the replicator
equations. They assume this population evolves such that successful strategies with
higher payoffs than average grow while less successful ones decay. Each species i has a
Darwinian fitness fi, which is related to the payoff function Ri that assigns a reward
to a performed action. Since the replicator dynamics describe the change of an infin-
ite population, the Darwinian fitness is related to the expected payoff for a specific
action, i.e., fi = E [Ri]. Section 2.4.3 describes how fi can be computed for practical
applications using a heuristic payoff table. While Ri may depend on the population
distribution, states or other agents, notation of such dependencies is dropped for the
general discussion and only included in specific settings. The general form of the rep-
licator dynamics reads as follows, and have been widely studied in the evolutionary
game theory literature [Gintis, 2009; Hofbauer and Sigmund, 2002; Weibull, 1996]:

dxi

dt
= xi



fi −
∑

j

xjfj



 . (2.6)

These dynamics are formally connected to reinforcement learning [Börgers and Sarin,
1997; Tuyls and Parsons, 2007; Tuyls et al., 2006]. This relation is explained in Sec-
tion 2.5, and extended in Chapter 3.

Consider a one-population model, where each individual encounters a random other
individual from the population, and the relative payoff of an individual from species
i against an individual of species j is given by Rij. This payoff may be interpreted
as the reproductive effect of an encounter, and can be given as a payoff matrix R.
Using fi = E [Ri] = eiRx, where ei is the ith unit vector, the one-population replicator
dynamics can be rewritten as follows denoting the transposed of x with xT :

dxi

dt
= xi

[

eiRx
T − xRxT

]

.

This one-population model is widely used in Chapter 6 in conjunction with heuristic
payoff tables as explained in Section 2.4.3.

To study multiple players that learn concurrently, multi-population models need
to be constructed. For ease of exposition, the discussion focuses on only two learning
players. Thus, two systems of differential equations are necessary, one for each player.
This setup corresponds to asymmetric games, where R and C are the payoff matrices

for respectively the row and column player, i.e., E
[

R1
i

]

= eiRy and E
[

R2
j

]

= xCej, and
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the available actions of the players belong to two different populations, respectively x

and y. This mapping translates into the following coupled replicator equations for the
two populations, where ei denote the ith unit vector:

dxi

dt
= xi

[

eiRy
T − xRyT

]

dyj

dt
= yj

[

xCeTj − xCyT
]

.

The change in the fraction playing action i is proportional to the difference between
the expected payoffs eiAy and xBei of action i against the mixing opponent, and the
expected payoff xRy and xCy of the mixed strategies x and y against each other. Hence,
above average actions get stronger while below average actions decay. The replicator
dynamics maintain the probability distribution, thus

∑
i
dxi

dt
= 0. The examples used in

this section are constrained to two actions, which implies dx1

dt
= −dx2

dt
and dy1

dt
= −dy2

dt
.

The policy space is completely described by the unit square (x1,y1), in which the
replicator dynamics can be plotted as arrows in the direction of (dx1

dt
, dy1

dt
). Using

h = (1,−1) and eliminating x2 and y2, the equations can be reduced to:

dx1

dt
= αx1(1− x1)

[

y1hRh
T + R12 − R22

]

dy1

dt
= αy1(1 − y1)

[

x1hCh
T + C21 − C22

]

.

A detailed analysis of this formulation of the replicator dynamics in the context of
multi-agent learning dynamics is presented in Section 5.2.

Stability criteria

Evolutionary dynamics can be analyzed for several notions of stability. The most basic
concept is the Fixed Point (FP) as an equilibrium. Let the dynamical system be
defined on a number of probability vectors xp, which represent the population for each

player p. A joint policy ~x = (x1, . . . , xn) is a fixed point if and only if ∀p, i :
dx

p
i

dt
= 0.

Nash equilibria (NE) are a subset of fixed points for the replicator dynamics. On
the one hand, all actions that are not played will not be picked up, i.e., xpi = 0 ⇒
dxi

dt
= 0. On the other hand, Nash equilibria only mix between strategies with equal

payoffs, thus all actions played with positive probability in a policy belonging to a
Nash equilibrium yield payoff equal to the payoff of the Nash equilibrium policy, and
eif

p
i =

∑
j x

p
j f

p
j . Hence, if a joint policy ~x is a Nash equilibrium, then it is also a fixed

point of the replicator dynamics.
An equilibrium to which trajectories converge and settle is known as an attractor,

while a saddle point is an unstable equilibrium at which trajectories do not settle. At-
tractors and saddle points are very useful measures of how likely it is that a population
converges to a specific equilibrium. Each attractor consumes a certain amount of the
strategy space that eventually converges to it. This space is also called the basin of
attraction of the attractor [Hirsch et al., 2004].
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Equilibria are Asymptotically Stable (AS) if points that start (infinitesimally)
close are pushed back towards the equilibrium. Formally, let χ(~x0, t) denote the tra-
jectory point that is reached from initial joint policy ~x0 by following the dynamics for
t units of continuous time, then ~x is asymptotically stable if and only if

∃ǫ∀x̂ : |~x− x̂| < ǫ↔ lim
t→∞

χ(x̂, t) = ~x.

A joint policy is an Evolutionary Stable Strategy (ESS) if it is Nash and it cannot
be invaded by other mixed strategies, i.e.,

∀p, i, x̂ 6= ~x : fpi (~x,~x) > fpi (x̂,~x)∧ fpi (~x, x̂) > fpi (x̂, x̂).

Evolutionary stable strategies refine asymptotically stable strategies in the replicator
dynamics [Hofbauer and Sigmund, 2002]. Overall, the refinements take the following
structure:

ESS ⊆ AS ⊆ NE ⊆ FP

Dynamical systems may also yield cyclic behavior or chaos, in which case trajectories
do not settle at fixed points but keep changing forever. Chaos has been observed in
two-agent learning dynamics of Q-learning with an epsilon-greedy policy-generation
function [Wunder et al., 2010], and cyclic behavior is rather common in the Matching-
Pennies game (see Section 5.2.2). The analysis within this dissertation is primarily con-
cerned with investigating the relation between Nash equilibria and asymptotic stability
in variations of the replicator dynamics that relate to specific reinforcement-learning
algorithms.

Simplex Analysis

The replicator dynamics and other dynamical systems can be visualized in a simplex
analysis that facilitates an intuitive grasp of the dynamics. Consider k elements that are
randomly chosen with probabilities x = (x1, x2, . . . , xk), such that x1, x2, . . . , xk > 0 and
∑k

i=1 xi = 1. We denote the set of all such probability distributions over k elements
as Xk. Xk is a (k − 1)-dimensional structure and is called a simplex. One degree of
freedom is lost due to the constraint that the vector be a valid probability vector.
Figure 2.3 shows the simplexes X2 and X3 for one-population models with two or
three actions. Experiments with one-population models mainly use X3, projected as
an equilateral triangle as in Figure 2.3 (b), but dropping the axes and axis labels.
As an example, Figure 2.4 shows the game Rock-Paper-Scissors and the simplex plot
with arrows that indicate the direction of change dx

dt
according to the one-population

replicator dynamics.
For multi-population dynamics, the cartesian product of several simplexes is re-

quired. As seen in Figure 2.3 (a), the simplex X2 is a line. In two-player two-action
games, the joint policy is completely characterized by the pair (x1,y1), the range of
which is the unit square [0, 1]2. Throughout the dissertation, experiments in such games
are illustrated with dynamics in the unit square, where arrows indicate the change
(dx1

dt
, dy1

dt
). Figure 2.5 shows the payoff matrix and replicator dynamics for the two-

agent game Matching Pennies.
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x1

x2

0 1

1

(a) X2

x1
x2

x3

0

1 1

1

(b) X3

Figure 2.3: The unit simplexes X2 (a; left) and X3 (b; right).

2.4.3 Real payoffs and the heuristic payoff table

Real applications are far more complex than benchmark toy domains and a full game
representation quickly becomes intractable. The main obstacle is the combinatorial
explosion of situations that can arise in complex domains. Instead of analyzing the
strategic conflict on the basis of atomic actions, meta-strategies or heuristic strategies
can encapsulate coherent sequences of actions and reactions based on domain know-
ledge. A player commits to the heuristic strategy before starting the game, and the
heuristic fully describes the behavior in the game. The strategic choice is moved to
the meta level, and now revolves around which heuristic strategy to choose. This may
already yield a much more tractable research problem, but the formulation of heuristic
strategies has another advantage: if each action represents a heuristic strategy, then
the payoff for that strategy does not depend on which player has chosen it, it rather
depends on the composition of strategies it is facing. This setting corresponds to the
setting of a symmetric game, which is inherent to the use of heuristic strategies.

Rock

Paper

Scissors

Rock Paper Scissors
( 0

1
−1

−1
0
1

1
−1
0

)

(a) payoff matrix R

Rock

Paper

Scissors

(b) replicator dynamics

Figure 2.4: Payoff matrix and one-population replicator dynamics of the game Rock-Paper-
Scissors.
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Figure 2.5: Bi-matrix game and two-population replicator dynamics of the Matching Pen-
nies.

Consider a normal form game with n players and k actions. The full representation
would require kn payoff entries and becomes intractably large even for moderate k and
n. If however the game is symmetric, the distribution of n players on k pure strategies is
a combination with repetition, hence there are

(

n+k−1
n

)

possible meta-strategy compos-

itions. Each of these compositions is a discrete profile ~A = (A1, . . . ,Ak) telling exactly
how many players play each strategy. A heuristic payoff table captures the payoff
information for all possible discrete distributions in a finite population [Walsh et al.,
2002].

Suppose we have 3 heuristic strategies and 6 players, this leads to a heuristic payoff
table of 28 entries, which is a serious reduction from 36 = 729 entries in the normal
form representation. Table 2.1 illustrates what the heuristic payoff table looks like for
three strategies A1,A2 and A3. The left-hand side expresses the discrete profile, while
the right-hand side gives the payoffs for playing any of the strategies given the discrete
profile.

Table 2.1: An example of a heuristic payoff table. The left half of the matrix gives the
number of players for each strategy, and the right hand side the average payoff in
this distribution. Payoffs of strategies not played are unknown and indicated with
a dash.

P =

















A1 A2 A3 U1 U2 U3

6 0 0 0 − −

... ...
4 0 2 −0.5 − 1

... ...
0 0 6 − − 0
















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Consider for instance the second row that is given in this table: it shows a profile
where 4 players play strategy 1, none of the players play strategy 2 and 2 players play
strategy 3. Furthermore, −0.5 is the expected payoff for playing strategy 1 given these
set of opponent strategies (i.e., given this discrete profile). When a strategy is not
employed by any player, no payoffs are recorded and the resulting expected payoff is
then unknown, as indicated with a dash. In zero sum games like poker, discrete profiles
where all players play identical strategies yield an expected payoff of 0. In this case,
profits and losses are actually divided between the same heuristic strategy deployed by
different players, and the average result (for this strategy) is 0.

To approximate the payoff for an arbitrary mix of strategies x in an infinite pop-
ulation distributed over the species according to x, n individuals are drawn randomly
from the infinite distribution. The probability for selecting a specific row Ni can be
computed from x and Ni:

P(Ni|x) =

(

n

Ni,1,Ni,2, . . . ,Ni,k

) k∏

j=1

x
Ni,j

j .

If a discrete distribution features zero agents of a certain information type, its pay-
off cannot be measured and Uj,i = 0. The expected payoff fi(x) is computed as the
weighted combination of the payoffs given in all rows, compensating for payoff that
cannot be measured:

fi(x) =

∑
j P(Nj|x)Uj,i

1− (1− xi)k
.

This normalized fitness is the basis of the experiments of Chapter 6, which compute
the underlying rewards from real world poker plays and simulated double auctions.

2.5 Dynamical systems of multi-agent learning

Evolutionary Game Theory (EGT) has been established as a tool to analyze independ-
ent reinforcement learning applied to multi-agent settings [Börgers and Sarin, 1997;
Hofbauer and Sigmund, 2002; Tuyls and Parsons, 2007]. Seminal work has shown that
Cross learning, a simple policy learner, becomes equivalent to the replicator dynamics
when the learning rate is decreased to the infinitesimal limit [Börgers and Sarin, 1997].
The link between learning algorithms and dynamical systems in subsequent work is
generally based on the limit of infinitesimal learning rates.

The general procedure for deriving a dynamical system corresponding to the dy-
namics of a learning algorithms is as follows: The process starts with the difference
equation for ∆x(t) = x(t + 1) − x(t); in direct policy search this difference may be
taken from the definition of the algorithm while in value iteration (e.g., Q-learning) it
needs to be derived from the policy generation function in conjunction with the update
rule. Next, suppose that the amount of time that passes between two iterations is 1,
and δ∆x(t) makes multiple or fractional updates possible. Using δ→ 0, the continuous
time limit of these equations yields a continuous dynamical system. The remainder
of this section describes such dynamical systems derived from Cross learning, regret
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minimization and Q-learning. While ∆x(t) is a stochastic variable for discrete time
steps, the behavior of the dynamical system in the infinitesimal limit is described by
the expectation E [∆x(t)], and can be interpreted in terms of evolutionary game theory.
Each agent’s policy relates to a population that describes the distribution over species
(actions), and the genetic operators that induce change to the population correspond
to the learning rule that updates the agent’s policy. This facilitates studying the beha-
vior and convergence properties of learning algorithms by analyzing the corresponding
dynamical system.

Tools from dynamical systems make it possible to prove properties of independ-
ent reinforcement learning in multi-agent settings, e.g., the average payoff of Infin-
itesimal Gradient Ascent, a policy gradient learning algorithm, converges to the Nash
equilibrium payoff in two-agent two-action matrix games, even though actual policies
may cycle [Singh et al., 2000]. This result has been strengthened by introducing the
Win-or-Learn-Fast (WoLF) learning speed modulation. The policies of Infinitesimal
Gradient Ascent with WoLF learning rates are proven to converge to the Nash equi-
librium policies in two-agent two-action games [Bowling and Veloso, 2002]. In contrast
to other reinforcement-learning algorithms like Q-learning, Infinitesimal Gradient As-
cent assumes that the agents possess a lot of information about the payoff structure1.
In particular, agents need to compute the gradient of the reward function, which is
only possible of the reward function is known. The variations Generalized Infinites-
imal Gradient Ascent (GIGA) has been devised to tackle this issue [Bowling, 2005;
Zinkevich, 2003], but it is beyond the scope of this dissertation.

The following sections introduce the dynamical systems that have been derived for
infinitesimal learning rates in Cross learning and regret minimization. Subsequently, a
dynamical system linked to an idealized model of Q-learning is examined in more detail,
since it is the basis of the extensions made in Chapter 3. The three algorithms Cross
learning, regret minimization and Q-learning are all closely linked to the replicator
dynamics from evolutionary game theory. Finally, the related family of dynamical sys-
tems of gradient ascent is given in Section 2.5.4. A comparison between all dynamical
systems introduced below is drawn in Chapter 5.

2.5.1 Cross learning and the replicator dynamics

Multi-agent learning and evolutionary game theory share a substantial part of their
foundation, in that they both deal with the decision-making process of boundedly
rational agents in uncertain environments. The link between these two fields is not
only an intuitive one, but was made formal with the proof that the continuous time
limit of Cross learning converges to the replicator dynamics [Börgers and Sarin, 1997].
The following paragraphs briefly review this result.

Recall the update rule of Cross learning given in Equation 2.2. Note that the prob-
ability xi of action i is affected both if i is selected and if another action j is selec-

1 This Infinitesimal Gradient Ascent family is not to be confused with REINFORCE learning auto-
mata that estimate the gradient from samples [Williams, 1992], and are thus closer to independent
reinforcement learning.
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ted. Let Ri or Rj be the reward received for taking action i or j respectively, and
let fi = E [Ri] denote the expectation of the reward. Recall that the policy change
∆xi(t) = xi(t+ 1) − xi(t) is time dependent. In expectation, Equation 2.2 induces the
following update, where the reference to time is dropped for readability:

E [∆xi] =

update to this action
︷ ︸︸ ︷
xi [fi − fixi] +

update to other actions
︷ ︸︸ ︷∑

j6=i

xj [−fjxi]

= xi

[

fi −
∑

jxjfj

]

.

Let the discrete algorithm assume 1 time unit between updates, then the continuous
limit of this process can be taken as xi(t + δ) = xi + δ∆xi, with lim δ → 0. This
transformation yields a continuous system, which can be expressed with the partial

differential equation. The equation is dxi

dt
= xi

[

fi −
∑

jxjfj

]

, which is equivalent to

the replicator dynamics of Equation 2.6. For multi-population dynamics, the policy of

each player p evolves according to the replicator dynamics for
x
p
i

dt
, where fpi depends

on the joint policy ~x.
The convergence behavior of Cross learning, being a simple learning automaton,

has also been classified in terms of Nash equilibria from game theory. In self-play,
pure Nash equilibria are found to be stable while mixed Nash equilibria are un-
stable [Thathachar and Sastry, 2003]. Equivalent results can be derived from the rep-
licator dynamics as a model of the learning process [Hofbauer and Sigmund, 2002].

2.5.2 Learning dynamics of regret minimization

The evolutionary framework has also been extended to the Polynomial Weights
algorithm, which as described in Section 2.2.2 implements Regret Minimiza-
tion [Blum and Mansour, 2007]. Despite the great difference in update rule and policy
generation (see Eq. 2.3), the infinitesimal limit has been linked to a dynamical system
that is quite similar to the dynamics of Cross learning [Klos et al., 2010].

dxi

dt
=

αxi

[

fi −
∑

j xjfj

]

1− α
[

maxk fk −
∑

j xjfj

] .

The numerator is equivalent to the replicator dynamics, and thus to Cross learning. The
denominator can be interpreted as a learning-rate modulation dependent on the best
action’s update. For two-player games, the payoffs can be expressed by the bi-matrix
game (R,C), and fi = eiRy for the first player:

dxi

dt
=

αxi
[

eiRy
T − xRyT

]

1− α [maxk ekRyT − xRyT ]
.

The dynamics for the second player are analogous for
dyj

dt
and are omitted here.
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2.5.3 An idealized model of Q-learning

The infinitesimal limit of Cross learning is equivalent to the replicator dynamics
(see Section 2.5.1), and its application to Q-learning reveals very similar dynam-
ics [Tuyls et al., 2003]. However, a simplifying assumption was made to derive an ideal-
ized model of Q-learning: Suppose that Q-learning would be updating all actions at each
iteration, the dynamics then give rise to the following system of differential equations:

dxi

dt
= τ−1 xiα



fi −
∑

j

xjfj





︸ ︷︷ ︸
replicator dynamics

+xiα

(

− log xi +
∑

k

xk log xk

)

︸ ︷︷ ︸
exploration terms

. (2.7)

The striking part of this result was that the equations contain a part equal to replic-
ator dynamics, identified to represent natural selection [Weibull, 1996], and additional
terms that relate to entropy, and can be considered a model of mutation. Relating
entropy and mutation is not new. It is well known [Schneider, 2000; Stauffer, 1999]
that mutation increases entropy. The concepts are similar to thermodynamics in the
following sense: the selection mechanism is analogous to energy and mutation to en-
tropy [Stauffer, 1999]. Hence generally speaking, mutations tend to increase entropy.
Exploration from reinforcement learning then naturally maps to the mutation concept,
as both concepts take care of providing variety. Analogously, selection maps to the
greedy concept of exploitation in reinforcement learning. The replicator dynamics en-
coding selection are scaled inversely proportional to the exploration parameter τ of the
Q-learning algorithm. This argument implies that exploration is dominant for large τ,
and exploitation is dominant for small τ. Due to the infinitesimal limit, the magnitude
of the dynamical system does not change the convergence behavior defined by the direc-
tion and proportionality of the force field. For a detailed discussion in terms of selection
and mutation operators, the interested reader may consult the references [Tuyls et al.,
2006, 2003].

It is known from game theoretic studies that human players do not purely se-
lect their actions greedily [Gintis, 2009]. Once in a while they also randomly explore
their alternative actions. This finding closely resembles the theory of reinforcement
learning where players have to make a trade off between exploration and exploitation
[Sutton and Barto, 1998]. In Chapter 6, the idealized model of Q-learning is used as a
model of learning with exploration.

With this dynamical model, it is possible to get insight into the learning process,
its traces, basins of attraction, and stability of equilibria by just examining the coupled
system of replicator equations and plotting its force and directional fields. The learning
dynamics for two-player stateless games can be described in matrix notation:

dxi

dt
= xiα

(

τ−1
[

eiRy
T − xRyT

]

− log xi +
∑

k

xk log xk

)

dyj

dt
= yjα

(

τ−1
[

xCeTj − xCyT
]

− logyj +
∑

l

yl logyl

)
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with x,y the policies, α the learning rate, τ temperature parameter, R,C the payoff
matrices, and ei the ith unit vector.

Börgers et al. observed that the actual learning traces of Cross learning may deviate
from the predicted behavior [Börgers and Sarin, 1997]. Similarly, it can be observed
that the behavior of the Q-learning process does not always match the derived Q-
learning dynamics. While the correspondence between algorithm and model improves
under smaller learning rates in Cross learning, these deviations are systematic and non-
negligible for Q-learning. Chapter 3 analyzes why it is the case and presents a variation
of Q-learning that perfectly matches the dynamical system.

2.5.4 Dynamical systems of gradient ascent

Gradient ascent (or decent) is a well known and capable optimization technique in the
field of machine learning [Sutton and Barto, 1998]. Given a well-defined differentiable
objective function, the learning process follows the direction of its gradient in order
to find a local optimum. This concept has been adapted for multi-agent learning by
improving the learning agents’ policies along the gradient of their payoff function.
This approach assumes that the payoff function, or more precisely the gradient of the
expected payoff, is known to the learners.

One algorithm that implements gradient ascent is Infinitesimal Gradient Ascent
(IGA), in which a learner updates its policy by taking infinitesimal steps in the direction
of the gradient of its expected payoff [Singh et al., 2000]. It has been proven that in
two-player two-action games, the joint policy of IGA in self-play either converges to
a Nash equilibrium, or the asymptotic expected payoff of the two players converges
to the expected payoff of a Nash equilibrium. A discrete time algorithm using a finite
decreasing step size shares these properties.

The learning algorithm for repeated (single-state) games is defined as follows: A
learner’s policy x(t) = {x1, x2, . . . , xk} denotes a probability distribution over its k
possible actions at time t, where xi is the probability of selecting action i, i.e., ∀i : 0 6

xi 6 1, and
∑

i xi = 1. Take V(x) : Rn → R to be the value function that maps a
policy to its expected payoff. The policy update rule for IGA can now be defined as

∆xi(t)← α
∂V(x(t))

∂xi(t)

xi(t+ 1)← projection(xi(t) + ∆xi(t))

(2.8)

where α denotes the learning step size. The intended change ∆x(t) may take x outside
of the valid policy space, in which case it is projected back to the nearest valid policy
by the projection function.

Win or Learn Fast (WoLF) is a variation on IGA that uses a variable learning
rate [Bowling and Veloso, 2002]. The intuition behind this scheme is that an agent
should adapt quickly if it is performing worse than expected, whereas it should be
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more cautious when it is winning. The modified learning rule of IGA-WoLF is

∆xi(t)←
∂V(x(t))

∂xi(t)

{
αmin if V(x(t)) > V(x∗)

αmax otherwise

xi(t + 1)← projection(xi(t) + ∆xi(t))

(2.9)

where x∗ is a policy belonging to an arbitrary Nash equilibrium. The presence of x∗ in
the algorithm means that WoLF needs not only to know the value function but also at
least one strategy that is part of a Nash equilibrium.

The Weighted Policy Learner (WPL) is a second variation of IGA that also
modulates the learning rate, but in contrast to WoLF-IGA it does not require knowledge
of Nash equilibria [Abdallah and Lesser, 2008]. The update rule of WPL is defined as

∆xi(t)← α
∂V(x(t))

∂xi(t)

{
xi(t) if ∂V(x(t))

∂xi(t)
< 0

1− xi(t) otherwise

xi(t+ 1)← projection(xi(t) + ∆xi(t))

(2.10)

where the update is weighted either by xi or by 1 − xi depending on the sign of the
gradient. The projection function is slightly different from the one used in IGA, in
that the policy is projected to the closest valid policy that lies at distance ǫ > 0 to the
policy space boundary, i.e., ∀t, i : ǫ 6 xi(t) 6 1− ǫ.

2.6 Summary and limitations of the state of the art

This chapter has given the most relevant concepts for multi-agent learning from the
domains of reinforcement learning, game theory and dynamical systems. Throughout
the remainder of the dissertation, these concepts are interrelated to provide a compre-
hensive grasp of learning algorithms in strategic interactions.

Strategic interactions are formalized in repeated normal form games (single-state) or
stochastic games (multi-state). Reinforcement-learning algorithms are situated in these
games and iteratively improve their policy based on the experienced payoff signal while
balancing a good performance (exploitation) with gaining experience that improves
the knowledge (exploration). The prerequisites for multi-agent learning algorithms are
diverse, and some algorithms require observing other agents’ actions and rewards.

The algorithms can either be studied by testing them empirically, or the convergence
behavior can be described analytically. For the latter purpose, learning algorithms are
linked to a set of differential equations that describes a dynamical system of their
learning dynamics given infinitesimal learning rates. For the three discussed learning
strategies, Cross learning, regret minimization and Q-learning, the learning dynamics
are closely related to the replicator dynamics from evolutionary game theory. However,
the learning dynamics of Q-learning have been derived under the simplifying assump-
tion that Q-learning would update all actions at every iteration, because without this
assumption the learning dynamics cannot be expressed in the policy space and are thus
not tractable in the evolutionary framework.
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The learning dynamics can be proven to cycle or to converge to certain joint policies.
If every player converges to a best reply, the joint policy constitutes a Nash equilib-
rium of the normal form game, and thereby links the learning behavior to classical game
theory. The strongest guarantees have been derived for algorithms that need a lot of
information, e.g., convergence to Nash equilibria is guaranteed for Minimax Q-learning
and Friend-or-Foe Q-learning which require observing other agents (see Section 2.3).
The same convergence has been attained for variations of Infinitesimal Gradient Ascent,
which require the gradient of the reward to be known. Chapter 3 improves the state of
the art in two ways: (1) it introduces the variant Frequency Adjusted Q-learning (FAQ-
learning) that corresponds to the idealized dynamical model of Q-learning, and (2) it
provides a proof of convergence to Nash equilibria for this new variant that only requires
minimal information. The idealized model of Q-learning is based on a constant explor-
ation rate and only available for single-state games, although many applications are
best modeled as multi-state environments and single-agent learning theory reveals that
probability of convergence to global optima is increased by using an initially high, then
decreasing exploration. Chapter 4 derives the more general model of FAQ-learning un-
der time-dependent exploration rates, and extends the model to stochastic games. The
gradient ascent dynamics are suggestively similar to the replicator dynamics although
they start from different information requirements. The relationship between the rep-
licator dynamics and gradient ascent dynamics is investigated in detail in Chapter 5.
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3
Frequency Adjusted Q-learning

Various derivatives of Q-learning play a prominent role in single- and multi-agent re-
inforcement learning [Busoniu et al., 2008; Crandall et al., 2011; Shoham et al., 2007;
Sutton and Barto, 1998; Watkins and Dayan, 1992]. The process of Q-learning starts
from some initialization of Q-values, which may encode optimistic, neutral or pess-
imistic priors. While these initial parameter values may be arbitrary in single-agent
settings [Watkins and Dayan, 1992], they may become crucial in multi-agent learn-
ing [Crandall et al., 2011]. The analysis below reveals that this dependency on initial
values may lead to irrational policy trajectories, i.e., the probability of a dominat-
ing action is not monotonically increased (see Figure 3.1). In contrast, the idealized
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Figure 3.1: Trajectories of Q-learning with a neutral prior (solid lines) and dynamics of its
idealized model (arrows) in the Prisoner’s Dilemma.
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evolutionary model presented in Section 2.5.3 yields rational policy progression. This
discrepancy motivates modifying the algorithm to match the idealized model.

In this chapter, the discrepancy between Q-learning and its idealized model is
examined further. Based on analytical insights, the Frequency Adjusted Q-learning
(FAQ-learning) algorithm is proposed. This variation of Q-learning inherits the beha-
vior of the idealized model for an arbitrarily large part of the policy space. In addition
to the theoretical discussion, experiments in the three classes of two-agent two-action
games illustrate the superiority of FAQ-learning. Finally, a proof of convergence in two-
player two-action games contributes to the theoretical foundation of the algorithm, and
more generally to the analytical framework of multi-agent reinforcement learning. This
chapter is based on prior publications [Kaisers and Tuyls, 2010, 2011].

3.1 Discrepancy between Q-learning and its idealized

model

Q-learning updates the state-action value estimates whenever a specific action is selec-
ted. As a result, each estimate is updated at its own frequency, and estimates of actions
that are selected more often are updated faster. In contrast, the idealized model assumes
all estimates to be updated equally fast. In essence, the newly proposed variation needs
to compensate for the difference in frequencies by modulating the learning step size for
each action separately. As a result, initialization dependencies are removed and con-
vergence progresses through more rational policy trajectories, i.e., in expectation never
moving away from dominant actions. It has been shown that modulating the learn-
ing rate can improve learning performance, e.g., Bowling et al. [Bowling and Veloso,
2002] have modulated the learning rate anti-proportional to the success of the current
strategy. The approach presented here is different in that it considers the learning rate
of each action separately, compensating for the fact that an action that is selected more
often receives more updates and thereby has its value estimates updated more quickly.

The standard Q-learning algorithm only updates the Q-value associated with the
selected action. For the simplicity of illustration, consider the single-state Q-learning
algorithm, where notation for state-dependency is dropped, i.e., after action a is selected
the respective Q-value is changed according to:

Qa(t+ 1)← Qa(t) + α

(

ra(t) + γmax
j

Qj(t) −Qa(t)

)

.

This can be rewritten to describe the change of the Q-value associated with an arbitrary
action i:

∆Qi(t) = Qi(t + 1) −Qi(t)

=

{
α

(

ri(t) + γmax
j

Qj(t) −Qi(t)

)

if i=a

0 otherwise.
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The policy x determines the frequency with which each Q-value is updated and it
influences the expected Q-value change. The expected reward E [ri(t)] also depends on
the environment and the other agents. The resulting expected Q-value change incurred
by the Q-learning update rule is thus:

E [∆Qi(t)] = xi(t) · α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.

Other authors [Babes et al., 2009; Gomes and Kowalczyk, 2009; Wunder et al., 2010]
independently arrived at the same expected change of Q-values. However, these sources
explicitly consider ǫ-greedy as the policy generation function, which maps Q-values to
a few discrete policies and thus does not allow the policy space of the process to be
described in a self-consistent way.

The dynamical system associated with Q-learning is based on the continuous time
limit of the learning process. It is inspired by prior work [Börgers and Sarin, 1997],
which describes a policy learner with infinitesimal time steps and shows that the process
of multi-agent Cross-learning converges to the replicator dynamics in the continuous
time limit. In the learning algorithm, updates proceed in discrete iterations of ∆t = 1,

E [Qi(t + 1) −Qi(t)] = 1 · xi(t) · α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.

If this update is incurred twice, ∆t = 2. By similar reasoning one can generalize this to
fractional updates. The continuous time limit can be constructed by changing the basis
for time to δ, representing an arbitrary multiple or fractional update time interval, and
then taking the limit of δ to zero:

E [Qi(t + δ) −Qi(t)] = δ · xi(t) · α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.

Now, taking the continuous time limit δ→ 0, and using the dot notation for differen-
tiation with respect to time, this equation becomes:

E
[

Q̇i

]

= xi(t) · α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.

Consider that Q̇i is continuous and can be treated as constant over an infinitesimally
small area with diameter ǫ, and in the infinitesimal time limit of α → 0 an infinite
number of updates is perceived between two distinct policies. As a consequence, the

expected change equals the actual change in that limit, i.e., E
[

Q̇i

]

= Q̇i. Formally,

∀ǫ > 0, however small, ∃δ > 0 : ǫ = kδ, with k → ∞ and E
[

dQi

ǫ

]

= E
[

dQi

kδ

]

=

1
k
E
[

dQi

δ

]

. According to the law of large numbers, the mean approaches the expected

value for large k. Hence, 1
k
E
[

dQi

δ

]

= dQi

kδ
= dQi

ǫ
.

Q̇i = xi(t) · α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.
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Finally, the difference between the Q-learning dynamics derived here and the idealized
model can be observed by juxtaposition. The idealized model [Tuyls et al., 2006, 2003]
starts from the following dynamics, assuming simultaneous updates of all actions:

Q̇i = α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.

This equation differs from the original Q̇i by a factor of xi(t), and explains observed
anomalies (deviations from the idealized model) and initialization dependencies of the
update rule. This discrepancy can be resolved in two ways: one, describing the dynamics
of Q-learning more precisely by incorporating the factor xi(t), or two, adapting the Q-
learning update rule to fit the model.

The idealized evolutionary game theoretic model describes more rational policy tra-
jectories than Q-learning actually exhibits (see Figure 3.1). For example, if two actions
are over-estimated by the current Q-values and a dominant action receives more up-
dates due to being selected more often, the dominant action will lose its over-estimation
more quickly and Q-learning may policy-wise move away from this dominant action.
Such behavior is undesirable because the problem of over- and under-estimation is
prevalent in the application of the algorithm. The Q-values need some initialization
that must not be based on knowledge of the rewards. An inappropriate initialization
leads to errors in the estimates. Analyses of single-agent learning may overcome these
dependencies by focusing on the limit of infinite time or by sufficient initial explor-
ation [Watkins and Dayan, 1992], but the amount of exploration that suffices may
differ from case to case and if underestimated, i.e., if exploration is decreased prema-
turely, the same problems of wrong estimates re-occur. Furthermore, the performance
in interaction with other learning agents may greatly depend on the priors and ini-
tial behavior [Crandall et al., 2011]. Another drawback of moving away from dominant
actions is the decrease of expected reward for a period of time, which may in some
applications be worse than an almost monotonically ascending expected reward with
a slightly lower accumulated payoff. For example, humans commonly prefer monoton-
ically increasing income over temporarily decreasing income, even if the cumulative
reward is lower [Ariely, 2009]. For these reasons, rather than striving for a more precise
description of Q-learning, I propose an alternative update rule for Q-learning in the
next section, i.e., Frequency Adjusted Q- (FAQ-) learning that perfectly matches the
dynamical system.

3.2 Implementing the idealized model of Q-learning

This section introduces Frequency Adjusted Q-learning (FAQ-learning), which inherits
the more desirable game theoretic behavior of the evolutionary game theory model that
was derived from idealized assumptions about Q-learning. In particular, the update rule
is adapted to compensate for the frequency term xi(t) in the expected Q-value change.
A comparison between Q-learning, FAQ-learning and the idealized dynamics illustrates
the merits of the newly proposed FAQ-learning algorithm in multi-agent settings.
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3.2.1 The algorithm Frequency Adjusted Q-learning

FAQ-learning is equivalent to Q-learning, except for the update rule for which it uses
the following adapted version:

Qi(t + 1)← Qi(t) +
1

xi(t)
α

(

ri(t) + γmax
j

Qj(t) −Qi(t)

)

. (3.1)

Using the same reasoning as in the previous section, the continuous time limit of this
process converges to the following equation:

Q̇i = α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

. (3.2)

As a result, FAQ-learning yields precisely the dynamics of the idealized
model [Tuyls et al., 2006, 2003], while classical Q-learning differs by a factor of xi(t).
In contrast to previous work, FAQ-learning does not need idealizing assumptions, since
it balances frequencies by modulating the learning rate for each action individually.
The experiments in the next section show how this difference translates to an exact
match of FAQ-learning and the evolutionary game theoretic model, while anomalies
and differences between Q-learning and its idealized model can be observed.

The update rule requires an adaptation to be applied as an algorithm in practical
domains or for numeric analysis, since the algorithm written in Equation 3.1 is only
valid in the infinitesimal limit of α, otherwise α

xi(t)
may become larger than 1. This

situation would allow the Q-values to escape the convex hull of experienced rewards.
That in turn is unreasonable for learning. In fact, a maximal learning step should be
very small to yield reasonable convergence behavior, i.e., α

xi(t)
<< 1. Consequently,

this formal version of FAQ-learning cannot be applied numerically yet. I propose the
following generalized and practical model of FAQ-learning with a new model parameter
β ∈ [0, 1]:

Qi(t+ 1)←Qi(t) +min

(

β

xi(t)
, 1

)

α

(

ri(t) + γmax
j

Qj(t) −Qi(t)

)

.

Next, inspect the properties of this update rule, considering that the behavior changes
at β

xi(t)
= 1, which is at xi(t) = β. For notational convenience, the time dependency

is dropped from xi(t), Qi(t), and ri(t) in the following equation:

xi > β : E [∆Qi] =
β

xi
α

(

E [ri] + γmax
j

Qj −Qi

)

xi < β : E [∆Qi] = α

(

E [ri] + γmax
j

Qj −Qi

)

.

If β = 1, this model degenerates to classical Q-learning. If 0 6 β < 1, the limit
of α → 0 makes this model equivalent to formal FAQ-learning with a learning rate
of αβ, i.e., the behavior converges to the derived replicator dynamics [Tuyls et al.,

41



CHAPTER 3. FREQUENCY ADJUSTED Q-LEARNING

2006, 2003]. Numerical simulation needs to choose finitely small α. In that case, the
dynamics for xi > β are equivalent to FAQ-learning with learning rate αβ, while the
dynamics for xi < β equal those of classical Q-learning with learning rate α. Hence,
the maximal learning step is defined by α and needs to be reasonably small, while
the size of the subspace that behaves like FAQ-learning is controlled by β. For both
parameters, smaller values are more desirable regarding the path of convergence, but
lead to an increase in the required number of iterations. By choosing β arbitrarily
small, the learner behaves according to the evolutionary model for an arbitrarily large
part of the policy space. The examples given below empirically evaluate FAQ-learning
with β = α to obtain a smooth convergence to the true Q-values, while maintaining
the preferred update behavior for a large part of the policy space.

3.2.2 Experiments and results

This section compares Q-learning and FAQ-learning trajectories to the idealized model.
For the sake of clarity, the empirical evaluation is restricted to two-player two-action
normal form games. This type of game can be characterized as a payoff bi-matrix game
(A,B), where for any joint action (i, j) the payoff to player one and two are given by
Aij and Bij, respectively. Figure 3.2 shows three representative classes of two-action
two-player games [Tuyls et al., 2006, 2003]: the Prisoners’ Dilemma (PD), the Battle
of Sexes (BoS), and Matching Pennies (MP). They represent the classes of games with
one pure Nash Equilibrium (PD), with one mixed and two pure Nash Equilibria (BoS),
and with one mixed Nash Equilibrium (MP).

For Boltzmann action selection, policies do not uniquely identify the Q-values they
are generated from. Translation of all Q-values by an equal amount does not alter the
policy, which is solely dependent on the difference between the Q-values. For example,
the Q-value pair (0, 1) generates the same policy as (1, 2). The replicator dynamics
describe the policy change as a function of the policy, while the learning update rule
incurs a policy change dependent on the policy and the Q-values. To compare Q-
learning and FAQ-learning to the evolutionary dynamics, learning trajectories showing
the update rule’s effect are given for several translations of initial Q-values. In particu-
lar, the initial Q-values are centered around the minimum, mean or maximum possible
Q-value, given the game’s reward space. As such, they encode pessimistic, neutral
or optimistic priors. Since Q-values estimate the discounted sum of future rewards,
their range relates to the reward according to the following equation for the minimum
Qmin =

∑∞
i=0 γ

irmin = 1
1−γ

rmin, and similarly for the maximum value.
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Figure 3.2: Reward matrices for Prisoners’ Dilemma (left, Defect or Cooperate), Battle of
Sexes (right, Bach or Stravinski) and Matching Pennies (bottom, Head or Tail).
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The neutral initialization is centered between the minimum and maximum value.
If γ = 0, this gives rise to {0, 2 1

2
, 5} for the Prisoners’ Dilemma, and {0, 1, 2} for Battle

of Sexes and for Matching Pennies; with γ = 0.9 the range increases to the tenfold.
Figures 3.4 and 3.3 show trajectories obtained from running the learners with γ = 0.9,
α = 10−6 for Q-learning, and α = β = 10−3 for FAQ-learning, with a fixed temperature
τ = 0.1. The trajectories yield 200 thousand iterations in all but the neutral and
optimistic Q-learning in the Prisoners’ Dilemma, which use 500 thousand iterations.

While classical Q-learning shows significantly different learning behavior depending
on the initialization, FAQ-learning merely increases the noise for higher values in the
initialization. The noise is caused by larger learning steps, as the Q-value change in-
cludes a term −αQi(t), which is clearly proportional to the magnitude of the Q-values.
Nonetheless, the expected direction of change remains unaffected in FAQ-learning.

In comparison to the evolutionary prediction, the FAQ-learning trajectories always
follow the predicted expected change, while Q-learning trajectories deviate from it de-
pending on the initialization. The behavior of Q-learning and FAQ-learning are most
similar to each other for the mean reward initialization. However, tweaking the ini-
tialization does not remove but only reduces the deviations, and knowing the exact
reward space violates the assumption of many applications. In addition, the Prisoners’
Dilemma shows qualitatively significant differences even for the mean initialization. In
sum, the behavior of FAQ-learning is consistent across initializations, which Q-learning
is not, and exhibits rational policy improvements in line with the idealized model.
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Figure 3.3: Comparison of Q-learning to FAQ-learning with various Q-value initializations
in the Matching Pennies.
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Prisoners’ Dilemma

Q

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

FAQ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

Battle of Sexes

Q

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

FAQ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

y
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

pessimistic neutral optimistic

Figure 3.4: Comparison of Q-learning to FAQ-learning with various Q-value initializations in
the Prisoners’ Dilemma and Battle of Sexes. The Q-values are initialized centered
at the minimum (left), mean (center) and maximum (right) possible Q-value
given the reward space of the game. The idealized model (arrows) matches the
observed FAQ-learning dynamics.
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3.2.3 Discussion

The results have shown empirical confirmation of the match between trajectories of
the newly proposed FAQ-learning algorithm and its evolutionary prediction, i.e., the
difference between trajectories of the stochastic algorithm and the dynamical system
are very small. This result is insensitive to the specific values of γ and α, as long
as α is reasonably small. Given the Q-value space and a specific temperature τ, the
most extreme policy can be computed using the policy generating function given in
Equation 2.5. Hence, a temperature τ can be selected such that xi > β is guaranteed
in FAQ-learning, and the algorithm behaves according to the formal FAQ-learning
dynamics for the complete range of valid policies under the given temperature. Using
analogous derivations as in Section 3.2.1, Frequency Adjusted SARSA (FAS) can be
shown to behave equivalently in single-state environments.

Further experiments are required to verify the performance gain in multi-state do-
mains and real applications; the relation between the learning speed αβ

xi
in FAQ- and

α in Q-learning is critical for the speed and quality of convergence that is achieved
and needs further investigation. However, the theoretical merits of FAQ-learning are
established: FAQ-learning implements the idealized model of Q-learning and yields ra-
tional policy improvements in self-play. This result provides a solid basis for the formal
analysis of its convergence behavior as presented in the next section.

3.3 Convergence in two-action two-player games

This section further analyzes the behavior of Frequency Adjusted Q-learning (FAQ-
learning) in two-agent two-action matrix games. It provides empirical and theoret-
ical support for the convergence of FAQ-learning to attractors near Nash equilibria.
The dynamics are evaluated in the three known representative two-agent two-action
games: Matching pennies, Prisoners’ Dilemma and Battle of Sexes. Results show that
Matching-Pennies and Prisoners’-Dilemma type games yield one attractor of the learn-
ing dynamics. In contrast, Battle-of-Sexes type games feature one attractor for high
exploration (temperature τ), and a supercritical pitchfork bifurcation at a critical tem-
perature, below which there are two attracting and one repelling fixed point. Fixed
points in all games approach Nash equilibria as the temperature tends to zero.

The remainder of this section is structured as follows: First, the learning dynam-
ics of FAQ-learning in two-agent two-action matrix games are examined theoretically.
Subsequently, simulation experiments that illustrate the learning behavior and conver-
gence near Nash equilibria in three representative games are given. Finally, the main
contributions are discussed in relation to previous and ongoing research.

3.3.1 Preliminaries

Recall that FAQ-learning uses the softmax activation function for policy-generation,
and a modified Q-learning update rule. The magnitude of each learning step for action
i is adjusted by the inverse of the action probability xi (computed at time t according
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to Eq. 2.5). FAQ-learning approximates simultaneous action-value estimate updates by
increasing the learning steps of less frequently selected actions.

Qi(t+ 1)← Qi(t) +
1

xi
α

(

ri(t) + γmax
j

Qj(t) −Qi(t)

)

.

Tuyls et al. [Tuyls et al., 2003] extended the work on Cross learning and the replicator
dynamics [Börgers and Sarin, 1997] to Q-learning. More precisely, they derived the
dynamics of the Q-learning process under the simplifying assumption of simultaneous
action updates. This analysis yields the following system of differential equations, which
according to Section 3.2 precisely describes the FAQ-learning dynamics for a two-player
stateless matrix game:

ẋi = xiα

(

τ−1 [eiAy− xAy] − log xi +
∑

k

xk log xk

)

ẏj = yjα

(

τ−1 [xBej − xBy] − logyj +
∑

l

yl logyl

)

.

(3.3)

with x,y the policies, α the learning rate, τ temperature parameter, A,B the payoff
matrices, and ei the i

th unit vector. The striking part of this result is that the equations
contain a selection part equal to replicator dynamics, and a mutation part. For an
elaborate discussion in terms of selection and mutation operators, please refer to the
published literature [Tuyls et al., 2006, 2003].

With this model, it is possible to get insight into the learning process, its traces,
basins of attraction, and stability of equilibria, by just examining the coupled system
of replicator equations and plotting its force and directional fields. An example plot
of the dynamics of the game Battle of Sexes is given in Figure 3.5; the corresponding
payoff matrix can be found in Figure 3.2.
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Figure 3.5: The dynamics of FAQ-learning (arrows) with very low exploration in the Battle
of Sexes, illustrating that fixed points of the learning process (indicated by ⊗)
correspond to Nash equilibria.
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3.3.2 Proof of convergence

This section delineates the theoretical support for convergence of FAQ-learning. The
dynamical system defined by ẋ and ẏ in Equation 3.3 yields a number of fixed points,
which may be attracting or repelling. Since learning trajectories converge to attractors,
the local stability (attracting or repelling) is the main condition that is analyzed.

For notational convenience, I define auxiliary variables a,b and functions K1,K2 to
simplify the FAQ dynamics ẋ, ẏ from Equation 3.3. Since only two-action games are
considered here, the action index is also dropped for the remainder of this section. In
particular, let the row player play policy (x, 1−x) against the column player with policy
(y, 1 − y):

a1 = A11 − A21

a2 = A12 − A22

b1 = B11 − B12

b2 = B21 − B22

h = (1,−1)

hAhT = a1 − a2

hBhT = b1 − b2

K1(x,y) = τ−1
1

[

yhAhT + a2

]

− log
x

1− x

K2(x,y) = τ−1
2

[

xhBhT + b2

]

− log
y

1− y

ẋ = αx(1− x)K1(x,y)

ẏ = αy(1− y)K2(x,y).

At a fixed point, ẋ = ẏ = 0. FAQ-learning with positive exploration parameter τ only
covers the open set of policies (x,y) with x,y /∈ {0, 1}, hence αx(1 − x) 6= 0. As a
consequence, ẋ = ẏ = 0 implies K1(x,y) = K2(x,y) = 0.

The local stability can be analyzed by checking the eigenvalues of the Jacobian

matrix J =

[

∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

]

at a fixed point [Hirsch et al., 2004]:

∂ẋ

∂x
= α [(1 − 2x)K1(x,y) − 1]

∂ẋ

∂y
= αx(1− x)τ−1

1 hAhT

∂ẏ

∂x
= αy(1− y)τ−1

2 hBhT

∂ẏ

∂y
= α [(1 − 2y)K2(x,y) − 1] .
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Since it is established that K1(x,y) = K2(x,y) = 0 at mixed fixed points, the Jacobian
simplifies:

J(x,y) =

[

−α αx(1− x)τ−1hAhT

αy(1− y)τ−1hBhT −α

]

.

The eigenvalues can be computed using the quadratic formula:

λ1/2 = −α±
1

2

√

4
∂ẋ

∂y

∂ẏ

∂x
+ (−α− (−α))2

= −α±

√

∂ẋ

∂y

∂ẏ

∂x

= −α± α

√

x(1− x)y(1− y)τ−1
1 hAhTτ−1

2 hBhT .

Dynamical systems theory has established that fixed points are locally attracting if
∀λ : real(λ) 6 0 and ∃λ : real(λ) < 0 [Hirsch et al., 2004]. This fact leads to the
following condition for stability, which will be denoted C(x,y) 6 1:

α

[

−1±
√

x(1− x)y(1− y)τ−1
1 τ−1

2 hAhThBhT

]

6 0

−1 6

√

x(1− x)y(1 − y)τ−1
1 τ−1

2 hAhThBhT 6 1

C(x,y) = x(1− x)y(1 − y)τ−1
1 τ−1

2 hAhThBhT
6 1.

Since x, (1−x),y, (1−y), τ1, τ2 all are positive, this condition holds independent of x,y if
hAhThBhT 6 0, leading to eigenvalues with real(λ) = −α < 0. In other words, games
that satisfy hAhThBhT 6 0 have only attracting fixed points. These games already
cover all Matching-Pennies type games and some Prisoners’-Dilemma type games.

The following system of equations defines the stability boundary using two condi-
tions for the fixed point, and one for local stability:

τ1 log
x

1− x
− a2 = yhAhT

τ2 log
y

1− y
− b2 = xhBhT

x(1− x)y(1 − y)hAhThBhT
6 τ1τ2.

This set of equations can be solved numerically for any specific game to obtain fixed
points and their stability property. The following general discussion will provide sup-
port for convergence in all three classes, especially discussing the characteristic number
hAhThBhT associated with each type of game. The two-player two-action normal form
games are partitioned into these three classes by conditions on the game-specific aux-
iliary variables a1, a2 and b1, b2.

Class 1 Matching Pennies games: I. a1a2 < 0, II. b1b2 < 0, and III. a1b1 < 0.
To link these conditions to the stability property, consider that hAhThBhT = a1b1−

a1b2−a2b1+a2b2. Assumptions I and II imply a1a2b1b2 > 0, hence a1b2 and a2b1 are
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either both positive or both negative. Dividing out III, one finds a2b2 < 0. Assume a1b2

is negative, then a1b2a1a2 > 0 leads to the contradiction a2
1 < 0. Since all numbers

in the matrix need to be real, it can be concluded that a1b2 > 0 and a2b1 > 0. In
sum, hAhThBhT < 0, which leads to the eigenvalues λ of the Jacobian matrix to have
real(λ) = −α as explained above. The fixed point is necessarily attracting in matching
pennies games, since ∀λ, real(λ) < 0.

Class 2 Prisoners’ dilemma games: I. a1a2 > 0 and II. b1b2 > 0.
Games of this class can have both positive and negative characteristic numbers.

Games with hAhThBhT < 0 yield necessarily attracting fixed points for the same
reason as in Class 1. However, a large number of games of this type have positive
characteristic numbers, e.g., for symmetric games hAhThAThT > 0. It remains to
show that games with III. (a1 − a2)(b1 − b2) > 0 have attracting fixed points.

From I and II one knows that [ya1 + (1− y)a2] 6= 0 and [xb1 + (1− x)b2] 6= 0. This
fact implies that there is only one solution to K1(x,y) = K2(x,y) = 0:

y
a1

τ1
+ (1− y)

a2

τ1
= log

x

1− x

x
b1

τ2
+ (1 − x)

b2

τ2
= log

y

1− y
.

Figure 3.6 plots an example of the first equation. The temperature τ determines the
point of intersection between the two lines: If a1 and a2 are positive, then x → 1 as
τ→ 0. If a1 and a2 are negative, then x→ 0 as τ→ 0. Equivalent conditions hold for
y in relation to b1 and b2.

It is trivial to check that the stability condition holds for sufficiently large temper-
atures. Since x(1− x) goes to zero faster than τ1 does, and similarly y(1 − y) goes to
zero faster than τ2 does, the stability condition x(1 − x)y(1 − y)hAhThBhT 6 τ1τ2
holds for all temperatures τ > 0.

Class 3 Battle of Sexes games: I. a1a2 < 0, II. b1b2 < 0, and III. a1b1 > 0.
The first two conditions imply a1a2b1b2 > 0, hence a1b2 and a2b1 are either

both positive or both negative. Dividing out the third assumption, one finds a2b2 > 0.
Assume a1b2 is positive, then a1b2a1a2 < 0 leads to the contradiction a2

1 < 0. Since all
numbers in the matrix need to be real, it can be concluded that a1b2 < 0 and a2b1 < 0.
As a result, the characteristic number (a1−a2)(b1−b2) = a1b1−a1b2−a2b1+a2b2 > 0.

From I and II, one knows that [ya1 + (1 − y)a2] and [xb1 + (1 − x)b2] both cross
zero. Figure 3.6 illustrates the difference between the Prisoners’ Dilemma and the
Battle of Sexes. It shows the function log x

1−x
and the linear interpolation between a1

τ1

and a2

τ1
. Large values of τ lead to one intersection, while sufficiently small values of

τ lead to three intersections and corresponding fixed points. The stability condition
x(1− x)y(1 − y)hAhThBhT 6 τ1τ2 is satisfied for large τ. At the critical temperature
τcrit, the stability condition holds with equality, leading to a supercritical pitchfork
bifurcation of the fixed points in τ. Below the critical temperature, two fixed points
approach pure Nash equilibria and are stable for the same reasons as the fixed point
in the Prisoners’ Dilemma. In addition, one fixed point remains mixed, and x(1 − x)
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Figure 3.6: Fixed points as intersections of two functions: The Prisoners’ Dilemma features
one fixed point, because there is exactly one intersection between the linear
combination of a1

τ1
and a2

τ1
with the log function. The Battle of Sexes yields one

or three fixed points, depending on the slope of the linear combination.

as well as y(1− y) is clearly bound away from zero. As a result, this fixed point is not
stable below the critical temperature.

The three discussed classes of two-agent two-action games cover all games in that
regime. Hence, it can be concluded that FAQ-learning yields attracting fixed points in
all two-agent two-action normal form games.

3.3.3 Experiments

This section illustrates the convergence behavior, and the effect of the exploration
parameter τ on the distance of fixed points to Nash equilibria. Each class of two-agent
two-action games is represented by one specific game. The payoff bi-matrices (A,B) for
Matching Pennies (Class 1), Prisoners’ Dilemma (Class 2), and Battle of Sexes (Class 3)
are given in Figure 3.2, and repeated in Figure 3.7 for reference. Let the row player play
policy (x, 1 − x) against the column player with policy (y, 1 − y). The Nash equilibria
(x,y) of these games lie at (1

2
, 1
2
) for the Matching Pennies, (1, 1) for the Prisoners’

Dilemma, and at (0, 0), (1, 1), and (2
3
, 1
3
) for the Battle of Sexes. The replicator dynamics

(ẋ, ẏ) make it possible to determine the coarse location of attractors by inspection. In
addition, the fixed points have been computed, and are marked with ⊗.

The top three rows show replicator dynamics and the computed fixed points for
different temperature parameters τ (first row τ = ∞, second row τ = 0.72877, third
row τ = 0). The fixed points move between these discrete values for τ as indicated by
the lines of the fourth row. For reference, all fixed points computed for the discrete
values are also marked in the fourth row.
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Figure 3.7: Replicator dynamics (arrows) and fixed points (⊗) for τ ∈ {∞, 0.72877, 0} (first
three rows). Fourth row shows trajectories of fixed points as temperature is
decreased. All fixed points are attracting, except for the mixed fixed point that
tends to ( 2

3
, 1

3
) after bifurcation (indicated with a dashed line).
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The dynamics of FAQ-learning are independent of the game when the exploration
parameter τ tends to infinity. This property is expected, since in that case no exploita-
tion of the payoff information is used. For finite temperatures, the three games exhibit
very different behavior. However, the fixed points approach the Nash equilibria of the
games in the limit of τ→ 0 in all three cases (see row 3).

The Matching-Pennies game yields one mixed equilibrium, which is also an attract-
ing fixed point of the FAQ-learning dynamics for any positive τ. In the limit τ → 0,
the fixed point’s stability weakens to Lyapunov stability (points that start close will
stay close to the fixed point, but not necessarily converge to it). This behavior may
be conjectured from the inspection of the dynamics, and can be confirmed using the
stability analysis from Section 3.3.2.

The Prisoners’-Dilemma game yields one pure equilibrium, and one mixed fixed
point that is always attracting. The lower the temperature τ, the closer the fixed point
moves towards the equilibrium. It is also stable in the limit τ→ 0.

The Battle-of-Sexes game yields three Nash equilibria. However, for high values of
τ, it only yields one attracting fixed point that moves from (1

2
, 1
2
) toward the mixed

equilibrium (2
3
, 1
3
). This fixed point splits in a supercritical pitchfork bifurcation at the

critical temperature τcrit ≈ 0.72877 and at position (x,y) ≈ (0.5841, 0.4158). For low
temperatures τ < τcrit, this game yields three fixed points that move closer to the
corresponding equilibria as τ is decreased. The two fixed points moving toward the
pure equilibria (0, 0) and (1, 1) are attracting, and the third one moving toward (2

3
, 1
3
)

is repelling.

The relation between the exploration parameter τ of FAQ-learning and the distance
between fixed points and Nash equilibria is closely examined in Figure 3.8. It shows
that the distance is constant zero for Matching Pennies, and monotonically decreasing
toward zero for the other two games. Notably, the two emerging fixed points in the
Battle of Sexes result in the same distance plot, due to a certain symmetry of the
game.

In sum, FAQ-learning converges to fixed points in the three representative games
Matching Pennies, Prisoners’ Dilemma and Battle of Sexes. In addition, these fixed
points can be moved arbitrarily close to the Nash equilibria of these games by choosing
an exploration parameter τ close to zero.

3.3.4 Discussion

This section has proven that FAQ-learning converges to fixed points which approach
Nash equilibria as exploration is decreased. Since FAQ-learning only differs from Q-
learning in the learning speed modulation of individual actions, this result can probably
be extended to classical Q-learning. However, this extension is not straight-forward,
since the dynamics of Q-learning are higher-dimensional than those of FAQ-learning.
This fact prevents the evaluation of the Jacobian in the two-dimensional policy space
of two-agent two-action games, and requires the application of convergence analysis to
the four-dimensional Q-value space.
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Figure 3.8: The distance between fixed points (fp) of FAQ-learning dynamics and Nash equi-
libria (eq) as a function of the exploration parameter τ. As τ → 0, the distance
|fp − eq|→ 0 as well.

Other authors have used the approach to describe multi-agent reinforcement
learning by a dynamical system with infinitesimal learning rates [Babes et al., 2009;
Gomes and Kowalczyk, 2009; Tuyls et al., 2006, 2003; Wunder et al., 2010]. However,
these related results do not provide convergence guarantees. After publication of this
proof of convergence in a workshop [Kaisers and Tuyls, 2011], an alternative proof
of convergence starting from equivalent premises has been published by other au-
thors [Kianercy and Galstyan, 2012]. The methodology deployed for the analysis within
this section is gaining momentum in the multi-agent learning literature.
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3.4 Summary

The contributions of this chapter can be summarized as follows: The deviation of Q-
learning from its evolutionary model has been analyzed and explained. The policy
dynamics of classical Q-learning cannot be described in a self-consistent way. Based
on the new insights, FAQ-learning has been introduced and is shown to comply with
the idealized model for an arbitrarily large part of the policy space, thereby exhib-
iting game theoretically more desirable behavior than Q-learning. Next, it is shown
theoretically that fixed points of FAQ-learning are attracting in Matching-Pennies and
Prisoners’-Dilemma type games, and that a supercritical pitchfork bifurcation occurs in
Battle-of-Sexes type games. In addition, representative example games of each category
demonstrate that fixed points approach Nash equilibria if exploration is decreased, and
illustrate the bifurcation of fixed points in the Battle of Sexes.

These results contribute to the study of multi-agent learning by deepening the un-
derstanding of convergence properties of independent reinforcement learning in multi-
agent settings. The method has been shown to work in the policy space, and naturally
extends to the Q-value space, which makes it possible to generalize insights to classical
Q-learning. By doing so, future work can strengthen the theoretical guarantees and
their impact to a wide array of applications.
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4
Extending the dynamical systems framework

The formal analysis of multi-agent reinforcement learning is challenging and requires a
more complex approach than single-agent learning. The merits of dynamical systems as
a framework for multi-agent learning have been demonstrated in the previous chapter,
e.g., by providing a proof of convergence. Here, this framework is extended in three ways
to allow application to a wider range of problems. First, exploration in single-agent
learning is commonly decreased over time, but previous evolutionary models only cap-
ture variations of Q-learning with a constant exploration rate. As a resolution, the next
section derives a model of Frequency Adjusted Q-learning (FAQ-learning) with a time-
dependent exploration rate. This section is based on published material [Kaisers et al.,
2009]. Second, the dynamical systems framework is well-established in single-state
games, and Q-value dynamics and policy dynamics for FAQ-learning and SARSA are
extended to stochastic games in Section 4.2. In addition, an alternative approach to
stochastic games is sketched as suggested in prior work [Hennes et al., 2010]. Third,
cooperative learning may get stuck in local optima. The concept of leniency has been
used in related work to increase probability of convergence to the global optimum and
is well-captured in the evolutionary model, as shown in Section 4.3 [Bloembergen et al.,
2011]. A summary of the findings concludes the chapter.

4.1 Time-dependent exploration rates in Q-learning

Q-learning is often used with decreasing exploration [Watkins and Dayan, 1992]. How-
ever, the idealized model presented in Section 2.5.3 assumes a constant exploration
rate. This section introduces an extension of the idealized model of Q-learning, provid-
ing the learning dynamics of FAQ-learning with exploration that may vary over time,
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and compares the newly derived dynamics to Cross learning using experiments in sim-
ulated auctions.

4.1.1 The time derivative of softmax activation

The idealized model of Q-learning is based on the time derivative of the softmax activa-
tion function assuming a constant temperature parameter τ. Here, the derivative based
on a temperature function τ(t) is given for single-state games. As before, Qi(t) de-
notes the Q-value of action i at time t with the notation for state-dependence dropped,
and recall xi(Qi(t), τ(t)) denotes the probability of selecting action i as a function of
Q-values and the exploration parameter. In the following equations, the notation for
dependence on t is dropped for the sake of readability. First, the softmax activation
function can be decomposed into fi and g:

xi(Q, τ) =
eτ

−1Qi

∑
j e

τ−1Qj
=̂
fi

g
.

The policy change ẋi(t) can be computed by applying the quotient rule, which makes
use of the derivatives of fi and g:

dfi

dt
=

d

dt

(

τ−1Qi

)

eτ
−1Qi

=

(

−τ−2dτ

dt
Qi + τ−1dQi

dt

)

fi

dg

dt
=

∑

j

(

−τ−2dτ

dt
Qj + τ−1dQj

dt

)

eτ
−1Qj

= g
∑

j

xj

(

−τ−2dτ

dt
Qj + τ−1dQj

dt

)

.

Next, the application of the quotient rule reads as follows:

dxi

dt
=

dfi
dt

g− fi
dg
dt

g2

=

(

−τ−2 dτ
dt

Qi + τ−1 dQi

dt

)

fig − fig
∑

j xj

(

−τ−2 dτ
dt

Qj + τ−1 dQj

dt

)

g2

= xi





(

−τ−2dτ

dt
Qi + τ−1dQi

dt

)

−
∑

j

xj

(

−τ−2dτ

dt
Qj + τ−1dQj

dt

)





= xiτ
−1





dQi

dt
− τ−1dτ

dt
Qi −

∑

j

xj

(

dQj

dt
− τ−1dτ

dt
Qj

)




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= xiτ
−1





dQi

dt
− τ−1dτ

dt
Qi −

∑

j

xj
dQj

dt
+
∑

j

xjτ
−1dτ

dt
Qj





= xiτ
−1





dQi

dt
−
∑

j

xj
dQj

dt
+

dτ

dt

∑

j

xjτ
−1 (Qj −Qi)



 .

The dependence on Q-values can be eliminated using the following equality:

τ−1 (Qj −Qi) = log eτ
−1Qj − log eτ

−1Qi

= log
fj

g

g

fi

= log
xj

xi

= log xj − log xi.

Substituting this equality, and simplifying using
∑

j xj = 1, the final form in vector
notation reads:

dxi

dt
= xiτ

−1





dQi

dt
−
∑

j

xj
dQj

dt
−

dτ

dt

(

log xi − x log xT
)



 . (4.1)

The derivative of softmax activation depends on the Q-value derivative of all actions.
That Q-derivative varies depending on the Q-learning update rule that is used. Equa-
tion 4.1 can be used to plug in Q-value derivatives of Q-learning, SARSA, or FAQ-
learning. Section 4.2 elaborates on multi-state extensions. The following section will
specify the FAQ-learning dynamics, which can be completely reduced to the policy
space.

4.1.2 Frequency Adjusted Q-learning with varying exploration

FAQ-learning has been analyzed in detail in Chapter 3. Recall Equation 3.2, which
gives the Q-value change dQi

dt
for FAQ-learning:

dQi

dt
= α

(

E [ri(t)] + γmax
j

Qj(t) −Qi(t)

)

.

This Q-value change has previously been used to compute the dynamical system assum-
ing a constant temperature. Here, it is substituted in the softmax activation derivative
with a time-dependent temperature function (Equation 4.1), which leads to the dy-
namics of FAQ-learning with varying exploration. The notation for time dependence of
xi(t), ri(t) and τ(t) are dropped for readability:

dxi

dt
= xiτ

−1



α

(

E [ri] + γmax
k

Qk −Qi

)

−
∑

j

xjα

(

E [rj] + γmax
k

Qk −Qj

)




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− xiτ
−1dτ

dt

(

log xi − x log xT
)

= xiατ
−1



E [ri] −Qi −
∑

j

xjE [rj] +
∑

j

xjQj





− xiτ
−1dτ

dt

(

log xi − x log xT
)

= xiατ
−1



E [ri] −
∑

j

xjE [rj] +
∑

j

xj (Qj −Qi)





− xiτ
−1dτ

dt

(

log xi − x log xT
)

= xiατ
−1



E [ri] −
∑

j

xjE [rj] +
∑

j

xjτ (log xj − log xi)





− xiτ
−1dτ

dt

(

log xi − x log xT
)

,

which leads to the simplified form:

dxi

dt
= xi

α

τ



E [ri] −
∑

j

xjE [rj]



− xi

(

α+
1

τ

dτ

dt

)

(

log xi − x log xT
)

.

In this form, several key features become apparent. First, the dynamics feature an
exploitation part equivalent to the replicator dynamics, and an exploration part related
to information gain. The exploitation term vanishes as exploration increases to infinity.
For the formal analysis of infinitesimal learning rates, consider the equivalent form
using β = α

τ
:

dxi

dt
= xiβ



E [ri] −
∑

j

xjE [rj]





︸ ︷︷ ︸
replicator dynamics

− xi

(

τβ+
1

τ

dτ

dt

)

information gain
︷ ︸︸ ︷
(

log xi − x log xT
)

︸ ︷︷ ︸
exploration

. (4.2)

The exploration term combines effects of exploration, vanishing as the exploration
parameter τ approaches zero, and effects of change in exploration. Given a constant
exploration rate, the equation degenerates to the previously established idealized model
(Equation 2.7). In fact, if learning is allowed infinite time, the derivative dτ

dt
can be

made arbitrarily small. The learning process will therefore asymptotically be the only
driving force of the policy adaptation process and the degenerate model may be applied.
However, time is finite for all practical applications and the extended model is required
for designing appropriate temperature functions.
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4.1.3 Designing appropriate temperature functions

Exploration is used to overcome local optima and increase the probability of converging
to global optima. However, an appropriate function of exploration over time needs to be
chosen. This section discusses the resulting challenges using a one-population model of
three strategies. The next section presents simulation experiments with an equivalent
model in the domain of auctions.

For single-agent learning, or more generally for stochastic approximation algorithms,
theory prescribes specific constraints for appropriate learning rates [Tsitsiklis, 1994].
More specifically,

∑∞
t=1 α(t) = ∞ and

∑∞
t=1 α(t)

2 < C for some constant C. These
constraints give guidance on how to select temperature functions to prove convergence
of single-agent learning. In essence, the convergence relies on the fact that learning steps
become smaller over time and thus stationary eventually. For multi-agent learning, the
demands are more complex, since optimality depends on the opponents behavior and
is better defined as a best response. General proofs of convergence are hard to obtain,
because an arbitrarily small change in the opponent’s policy may induce an arbitrarily
large change in the best response. More specifically, consider an opponent playing
strategy y ∈ [0, 1], and let the payoff to the learning agent be defined as f1(y) = y
and f2(y) = 1 − y for action one and two, respectively. Then, an arbitrarily small
change δ of the opponent from y = 1

2
+ δ to y = 1

2
− δ changes the best reply from

playing purely action 1 to playing it not at all. As a result, even in self-play (i.e.,
learning algorithms only face opponents of their own type), where all agents use the
same decreasing learning steps, the decrease of the learning step size may not happen
too fast, as it limits the attainable policy change for that agent. However, to reach the
best response, this policy change may need to be large. Therefore, multi-agent learning
requires new guidelines on designing appropriate temperature functions, possibly only
reaching stability (or at least ǫ-stability) if learning never ceases.

Consider the simplest example of multi-agent learning: self-play with shared
memory. This kind of learning can be modeled using one-population dynamics. For
simplicity, the examples in this section are based on three strategies; the population
distribution x = (x1, x2, x3) can be visualized in a simplex. Each corner represents a
pure population of only one of the strategies, boundaries mix between two strategies,
and an interior point represents a mix of all strategies proportional to the position of
the point. The population changes according the dynamics ẋ = (ẋ1, ẋ2, ẋ3), where main-
taining the population distribution

∑
i xi = 1 and ∀i : 0 6 xi 6 1 implies

∑
i ẋi = 0.

As described in the previous section, the FAQ-learning dynamics with varying tem-
perature (Equation 4.2) can be decomposed into several terms: the replication dynamics
RD, which encode exploitation, and an information gain term IG, which is scaled by
exploration βτ and relative change in exploration 1

τ
dτ
dt

. These force fields of learning
and exploration are vector fields that simultaneously influence the policy:

dxi

dt
= RD− xi

(

τβ+
1

τ

dτ

dt

)

IG.

The exploration term can be further decomposed into xiIG, which is only a function
of x, and −

(

τβ+ 1
τ
dτ
dt

)

, which depends on t and determines the scale and sign of the
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resulting force. The first term can be computed for a grid of points in the simplex to
give an intuition of the resulting force, and since it only depends on x it always has one
of the two forms depicted in Figure 4.1 (a), either for increasing or for decreasing the
temperature—it only varies in magnitude. These plots feature arrows in the direction
of ẋ which are scaled proportionally to |ẋ|. Figure 4.1 (b) plots an example temperature
function, derived below, over the interval [0, 1] and shows how the term 1

τ
dτ
dt

ensures
that the influence of temperature decrease on policy change vanishes over time. Fur-
thermore, it reveals that the derivative of the temperature makes it possible to balance
the two terms, i.e., if the temperature decrease is spread over a longer time, learning
can compensate more easily because τ̇ is smaller.

Next, a temperature function is designed for the interval [0, 1] that exerts a con-
trolled force on the learning process. To minimize the impact of the temperature de-
crease on the learning process, the fraction 1

τ
dτ
dt

should approach zero when time ap-

proaches 1, e.g., 1
τ
dτ
dt

= (b − dctd−1), where b, c,d are calibration parameters, which
can be achieved with an exponential function:

τ(t) = aebt−ctd

τ̇(t) = (b − dctd−1)aebt−ctd

such that
1

τ

dτ

dt
= (b − dctd−1).

Initially, learners should explore, and over time they should become more rational. The
following parameters calibrate this function such that τ(0) = τmax and τ(1) = τmin:

a = τmax

b = log

(

τmin

τmax

)

+ c

c = − log

(

τmin

τmax

)

(1− d)−1

A

B

C A

B

C

increasing τ decreasing τ

(a) Force fields

0 0.5 1
ï3

ï1

0

1

time

 

 

o

o�

0.1 o� o
ï1

(b) Magnitude

Figure 4.1: The force field xix
IG
i that exploration and a change thereof exhibits on the policy,

and scalar functions over time τ and 1
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that determine the force field’s mag-
nitude.
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τt = τmaxe
log( τmin

τmax
)(t−t log( τmin

τmax
)(1−d)−1−td(1−d)−1)

τt = τmax

(

τmin

τmax

)t+(1−d)−1(t τmin
τmax

+td)
.

The remaining parameter d determines the curvature of the force decrease and is set
to d = 4 for the experiments below. Temperature is decreased from τmax = 1 to
τmin = 0.0001. This function corresponds to the plot in Figure 4.1 (b). However, the
experiments stretch this function on the interval [0, 4] to decrease the strength of the
resulting force, i.e. τ̃(t) = τ(1

4
t).

4.1.4 Experiments in auctions

Here, the classical replicator dynamics, which do not bear a term for exploration,
are compared to constant exploration rates and the newly derived model with varying
exploration. In particular, traders learn the probabilistic mix of three predefined trading
strategies that yields the highest expected profit in a population of traders that choose
between these strategies. This study extends previous research in auctions by Phelps et
al. [Phelps et al., 2006, 2004], which only considered models of Cross learning. Results
show the increased basin of attraction for the global optimum given variable exploration
and underline the importance of modeling exploration in multi-agent reinforcement
learning.

Auctions provide a variety of markets with high impact on today’s economy, e.g.,
stock exchanges and online peer-to-peer trading platforms. The individual trader seeks
to maximize its profit, while the competition conceals their strategies. Hence, auctions
naturally fit the model of multi-agent systems in which reinforcement learning can
be used to maximize payoff. Recent research has applied models of the replicator dy-
namics, which are linked to the simple reinforcement learner Cross learning, to foster
the understanding of rational behavior in auctions [Phelps et al., 2010a,b]. However,
the myopic rationality of Cross learning lacks exploration, which is an essential trait
of learning. In this section, an experiment based on simulated auctions shows qualit-
ative differences in the asymptotic behavior of rational reinforcement learning versus
explorative learning.

Auction setup

Auctions provide a market for traders to exchange goods for money. Buyers and sellers
place offers, bids and asks respectively, to indicate their intention to trade at a certain
price. The clearing house auction considered here proceeds in rounds and polls offers
from each trader each round. When all offers are collected, an equilibrium price is
established based on the available offers such that demand meets supply at this price.
It is set to the average of the two offers that define the range of possible equilibrium
prices, i.e., the lowest bid and the highest ask that can be matched in the equilibrium.
The good to be traded may have a different private value for each trader. The difference
between the transaction price and the private value of the trading agent determines the
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agent’s profit, assuming that buyers will not buy above and sellers will not sell below
their private value.

A multitude of trading strategies has been devised to derive the next offer, possibly
exploiting the knowledge about offers and transactions that were observed in previ-
ous rounds. The experiments below are based on the same auction setup as Kaisers et
al. [Kaisers et al., 2008]: a simulated continuous double auction with the three trad-
ing strategies Modified Roth-Erev (MRE), Zero Intelligence Plus (ZIP) and Gjerstad
and Dickhaut (GD). Roth and Erev devised a reinforcement-learning model of human
trading behavior [Erev and Roth, 1998], which is modified to perform in a clearing
house auction as Modified Roth-Erev (MRE) [Nicolaisen et al., 2001]. MRE is evalu-
ated in competition to Gjerstad and Dickhaut (GD) and Zero Intelligence Plus (ZIP).
GD maximizes the expected profit by computing the profit and probability of leading
to a transaction for a set of relevant prices [Gjerstad and Dickhaut, 1998]. ZIP places
stochastic bids within a certain profit margin, which is lowered when a more compet-
itive offer was rejected and increased when a less competitive offer was accepted [Cliff,
1997; Cliff and Bruten, 1997, 1998]. A more detailed survey of these strategies can be
found [Parsons et al., 2005; Phelps et al., 2004].

Evaluation methodology

Given a set of available trading strategies, it is of high interest which strategy is best
in the sense that it yields the highest expected payoff. However, this question cannot
be answered in general as the performance of a trading strategy is highly dependent
on the competition it faces [Rust et al., 1993]. Walsh et al. [Walsh et al., 2002] have
proposed a heuristic payoff table to capture the average profit of each trading strategy
for all possible mixtures of strategies in the competition of a finite number of n traders.
Each predefined trading strategy is taken as an atomic action of a symmetric normal
form game. Assuming all agents update their policy according to the Q-learning model,
the average behavior of the population can be described by the derived model.

The experiments are based on a heuristic payoff table for a clearing house auc-
tion with n = 6 traders who may play a probabilistic mixture of the three strategies
ZIP, MRE and GD. The distribution of n agents on k pure strategies is a combina-
tion with repetition, hence a heuristic payoff table requires

(

n+k−1
n

)

rows. Each row
yields a discrete profile N = (N1, . . . ,Nk) telling exactly how many agents play each
strategy. The payoffs of these discrete profiles can be measured in many domains, e.g.,
in simulated auctions. However, measurements are insufficient to capture the payoff to
strategies that are not present, i.e., whenever Ni = 0 then Ui(N) is unknown for that
discrete profile. Table 4.1 shows an excerpt of the heuristic payoff table computed from
simulated auctions, indicating unknown payoffs with a dash.

To approximate the payoff for an arbitrary mix of an infinite population, a weighted
average is computed from the payoffs that are listed in the heuristic payoff table.
More specifically, n traders are drawn from the infinite population according to its
distribution. As introduced in Section 2.4.3, this drawing determines the probability
of each finite population distribution to occur and can be computed exactly. Let the
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Table 4.1: An excerpt of the heuristic payoff table computed for a clearing house auction
with 6 agents and the three strategies ZIP, MRE and GD.

NZIP NMRE NGD UZIP UMRE UGD

6 0 0 99 - -
5 1 0 97 100 -

...
...

0 1 5 - 43 79
0 0 6 - - 79

set of all discrete profiles be denoted as ν = {(n, 0, . . . , 0), . . . , (0, . . . , 0,n)} and let
µi = {N ∈ ν|Ni = 0} be the set of profiles where strategy i is not played. Furthermore,
let µ̄i = {N ∈ ν|Ni 6= 0} be the complement of µi. The expected payoff can be computed
from the heuristic payoff table:

fi(x) =

∑
N∈µ̄i

Ui(N) ·
(

n
N1,...,Nk

)

· xN1

1 · . . . · xNk

k

1−
∑

N∈µi

(

n
N1,...,Nk

)

· xN1

1 · . . . · xNk

k

.

The normalization in the denominator compensates for unknown payoffs.

Results

The resulting dynamics can be visualized in a force field plot as in Figure 4.2, where
the arrows indicate the direction and strength of change. It can be observed that
the selection-mutation model for Q-learning converges to the selection model as τ ap-
proaches zero.

The force field plots deliver a snapshot of the direction of population change at a
certain time. Since the temperature depends on time, the learning dynamics smoothly
change from those depicted for τ = 1 to those depicted for τ = 0.0001. Furthermore, the
policy is not only subject to the forces of learning but rather to a linear combination
of the forces of learning as in Figure 4.2 and temperature change as in Figure 4.1.

A trajectory plot shows the actual evolution from one or more initial populations
over time. It is a discrete approximation of the continuous dynamics, making it possible
to analyze the convergence of the initial policy space computationally. Given policy
xt = (xt,ZIP, xt,MRE, xt,GD) at time t, these plots are generated from the dynamics
defined in Equation 4.2.

Figure 4.2 (b) shows the convergence of 200 example trajectories in the selection
model and in the selection-mutation model with decreasing temperature. Each tra-
jectory represents a learning process from a certain initial policy. The policy is not
only subject to learning updates but rather to a linear combination of the forces of
learning as in Figure 4.2 and temperature change as in Figure 4.1. It can be observed
that the convergence behavior of the selection model that inherently features a fixed
temperature is completely captured by the snapshot in the directional field plot. The
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τ = 1
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τ = 0.1

ZIP
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τ = 0.0001

(a) Directional field plot

decreasing τ

ZIP

MRE

GD

τ = 0

ZIP

MRE

GD

τ = 0

ZIP

MRE

GD

(b) Trajectories with uniform starting po-
sitions and Cross learning model

Figure 4.2: (a) Replicator dynamics for a set of fixed temperatures and (b) trajectories of
the selection model for Cross learning compared to the new model for Q-learning
with a varying exploration rate as in Equation 4.2.

selection-mutation model on the other hand features a continuously changing force field
and cannot be captured by inspection of the directional and force field plots.

An analysis of 1000 trajectories with uniformly sampled initial policies showed the
following convergence: In the selection model, 25.1% converged to the pure profile
(0, 0, 1) with payoff 78.51 and 74.9% converged to the mixed profile (0.813, 0.187, 0)
with payoff 97.27. These yield an overall expected asymptotic payoff of 92.56 for the
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selection model given a uniform starting population. In contrast, 100% of the strategy
space converges to (0.811, 0.189, 0) with an expected payoff of 97.25 in the mutation
model. The results imply that a population of agents that utilize the exploration scheme
to overcome local optima may obtain a higher expected payoff than a population of
myopic, absolutely rational learners.

4.1.5 Discussion

This model has a strong explanatory power and a clear interpretation. E.g., when
the temperature decreases too fast it may make the force of temperature decrease
stronger than learning and lead to strange convergence behavior to pure policies. This
hypothetical situation matches algorithmic observations, in particular when the initial
Q-values are outside the convex combination of values from the reward range.

The contributions of this section are two-fold: On the one hand, the evolutionary
model of Q-learning has been extended to account for a varying exploration rate. On
the other hand, a case study in the domain of auctions has demonstrated that this
model may deliver qualitatively different results, going beyond rational learners and
considering a more complex model of learning, which may lead to global rather than
local optima. An appropriate temperature function has been designed for this specific
case study. However, gaining insight into the dynamics of games, especially if time-
dependent, remains a challenging problem. Chapter 5 introduces a new perspective on
multi-agent learning dynamics as a new tool to design time-dependent parameters.

4.2 Learning dynamics in stochastic games

So far, the analysis of multi-agent learning dynamics has been applied to the most tract-
able environments, namely single-state games. Now that Chapter 3 has established a
proof of convergence for FAQ-learning and the single-state dynamics have been ex-
tended to account for varying exploration rates, it is possible to provide a basis for
tackling multi-state environments, here modeled as stochastic games. Therefore, this
section first describes the Q-value dynamics for multi-state games, and then extends
the policy dynamics of FAQ-learning to multiple states. In addition, the theory is ex-
tended to a dynamical systems model of SARSA, which is a variant of Q-learning with
a slightly different update scheme. Finally, an alternative approach to stochastic games
based on networks of learning algorithms is sketched. The extension to multi-state
games is not meant to be conclusive—it is rather a basis for future work to connect to
the well established dynamical models of single-state games.

4.2.1 Multi-state Q-value dynamics

Each player maintains a Q-value function that depends on the state s, the action i, and
the stage t. At each iteration, only the selected action is updated based on the perceived
reward signal ri(t). This reward depends on the action i, but may also depend on the
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state and possibly on the subsequent state after stochastic transition. For the sake of
generality, notation for such additional dependencies is omitted but implied:

∆Qi(st, t) =

{
α

(

ri(t) + γmax
j

Qj(st+1, t) −Qi(st, t)

)

if i selected

0 otherwise.

At any time t, the expected Q-value change for Q-learning in stochastic games can
be computed similarly to the single-state derivations given in Section 3.1. Let ps =

P(st = s|t) denote the probability for the game to be at state s at time t, and note
that updates are only applied to the Q-values of the current game state:

E [∆Qi(s, t)] = E

[

xiα

(

ri(t) + γmax
j

Qj(st+1, t) −Qi(st, t)

)]

= psxiα

(

E [ri(t)] + E

[

γmax
j

Qj(st+1, t)

]

−Qi(s, t)

)

= psxiα

(

E [ri(t)] + γ
∑

s′

P(s ′|s, i)max
j

Qj(s
′, t) −Qi(s, t)

)

.

Analogous reasoning leads to the multi-state Q-value dynamics of FAQ-learning:

E [∆Qi(s, t)] = psα

(

E [ri(t)] + γ
∑

s′

P(s ′|s, i)max
j

Qj(s
′, t) −Qi(s, t)

)

.

Taking the limit of an infinitesimal learning rate for the expected Q-value change under
FAQ-learning leads to the following differential form:

dQi(s, t)

dt
= psα

(

E [ri(t)] + γ
∑

s′

P(s ′|s, i)max
j

Qj(s
′, t) −Qi(s, t)

)

. (4.3)

This equation generalizes the single-state Q-value dynamics that have been derived
independently by several authors [Gomes and Kowalczyk, 2009; Tuyls et al., 2003;
Wunder et al., 2010]. Specifically, s ′ and st can only take one value s in single-state
environments and thus P(s ′|st, t) = P(s|s, t) = 1 and ps = P(st = s|t) = 1. By substi-
tution, Equation 4.3 degenerates to the form given in the cited work. Note that these
Q-value dynamics hold for several policy-generation schemes, e.g., both for ǫ-greedy
and softmax activation. These schemes are encapsulated in the equation by ps and
P(s ′|s, i), both of which are dependent on the policy.

4.2.2 Multi-state policy dynamics

Consider FAQ-learning with the softmax activation function to generate policies from
Q-values. Recall the softmax activation function:

xi(Q, τ) =
eτ

−1Qi

∑
j e

τ−1Qj
.
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Note that x depends on the state, but notation for that dependence has been dropped
for the sake of readability. The derivative of this function has been given in Equation 4.1,
and is repeated here for the reader’s convenience:

dxi

dt
= xiτ

−1





dQi

dt
−
∑

j

xj
dQj

dt
−

dτ

dt

(

log xi − x log xT
)



 .

The multi-state Q-value dynamics that have been derived in the previous section can be
substituted into this equation to compute the expected policy change for FAQ-learning
in stochastic games:

dxi

dt
= psxiτ

−1α



E [ri(t)] −
∑

j

xjE [rj(t)]





+ psxiτ
−1αγ

∑

j

xj
∑

s′

(

P(s ′|s, i) − P(s ′|s, j)

)

max
k

Qk(s
′, t)

− xi

(

psα+ τ−1dτ

dt

)

(

log xi − x log xT
)

. (4.4)

In the single-state case, P(s ′|s, i)−P(s ′|s, j) = 0 and ps = 1, hence this equation degener-
ates to the FAQ-learning dynamics with varying temperature as derived in Section 4.1.
Additionally assuming a constant temperature, the equations further degenerate to the
idealized model [Tuyls et al., 2006].

In contrast to the single-state dynamics, the dependency on Q-values does not drop
in the policy model. As a result, the learning process is simply higher-dimensional
and more complex than can be expressed purely in terms of policy dimensions. This
irreducibility and high dimensionality poses additional challenges for the analysis of
multi-state dynamics, e.g., even a two-agent two-action two-state problem yields an
8-dimensional phase space, which is hard to visualize.

4.2.3 Dynamics of SARSA

The dynamics of Q-learning and State-Action-Reward-State-Action (SARSA) are equi-
valent in single-state games, but they do differ in stochastic games. Consider the SARSA
update, which is modified from that of Q-learning. Let j be the action selected at time
t+ 1:

∆Qi(st, t) =

{
α (ri(t) + γQj(st+1, t) −Qi(st, t)) if i selected

0 otherwise.

Instead of using the max operator as in Q-learning, the SARSA update is based on the
Q-value of the selected action in the subsequent state. Analogous to Q-learning, the
expected Q-value update becomes:

E [∆Qi(s, t)] = xiα

(

E [ri(t)] + γ
∑

s′

P(s ′|s, i)
∑

k

xk(s
′)Qk(s

′, t) −Qi(s, t)

)

.
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Inspired by FAQ-learning, SARSA can be modified to Frequency Adjusted SARSA
(FA-SARSA) by adjusting the update rule:

Qi(t+ 1)← Qi(t) +
1

xi(t)
α
(

ri(t) + γQj(st+1, t) −Qi(t)
)

.

Taking the infinitesimal limit of this update rule and substituting the resulting Q-value
dynamics into the softmax derivate leads to the following dynamics of FA-SARSA:

dxi

dt
= psxiτ

−1α



E [ri(t)] −
∑

j

xjE [rj(t)]





+ psxiτ
−1αγ

∑

j

xj
∑

s′

(

P(s ′|s, i) − P(s ′|s, j)

)

∑

h

xh(s
′)Qh(s

′, t)

− xi

(

psα+ τ−1dτ

dt

)

(

log xi − x log xT
)

.

Just like Equation 4.4, this equation degenerates to the previously derived FAQ-learning
dynamics in single-state games, where P(s ′|s, i) − P(s ′|s, j) = 0 and ps = 1. This
derivation formally proves the equivalence of FAQ-learning and FA-SARSA in single-
state games. The specific extended models derived in this and the previous section can
be used to study either algorithm in stochastic games.

4.2.4 Networks of learning algorithms

This dissertation models existing learning algorithms and derives dynamical systems
to model their dynamics. The challenges going hand-in-hand with the complexity of
such multi-state dynamics have inspired a different approach giving rise to less complex
multi-state dynamics [Hennes et al., 2010; Vrancx et al., 2008].

The core idea is to adapt learning algorithms from single-state games to stochastic
games by feeding them a modified reward signal. To this end, a network of learning
algorithms has been conceived [Vrancx et al., 2008]. An agent associates a dedicated
learning algorithm, e.g., a Learning Automaton (LA), to each state of the game and
control is passed on from one learner to another. Each learner tries to optimize the
policy in its state using the standard update rule for single-state games. Only a single
learner is active and selects an action at each stage of the game. However, the immediate
reward from the environment is not directly fed back to this learner. Instead, when the
learner becomes active again, i.e., next time the same state is played, it is informed
about the cumulative reward gathered since the last activation and the time that has
passed by. The reward feedback f(t) for an agent’s automaton LA(s) associated with
state s is defined as

f (t) =
∆r

∆t
=

∑t−1
k=t0(s)

r (k)

t− t0(s)
, (4.5)

where r (k) is the immediate reward for the agent in epoch k and t0(s) is the last oc-
currence function that determines when states s was visited last. The reward feedback
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in epoch t equals the cumulative reward ∆r divided by time-frame ∆t. The cumulative
reward ∆r is the sum over all immediate rewards gathered in all states beginning with
epoch t0(s) and including the last epoch t−1. The time-frame ∆t measures the number
of epochs that have passed since automaton LA(s) has been active last. This definition
means the state policy is updated using the average stage reward over the interim im-
mediate rewards. Initial experiments solely consider learning automata [Vrancx et al.,
2008]. However, the method is more general: any learning algorithm that is applic-
able to single-state games can be aggregated in a network, which is then applicable to
stochastic games.

Learning automata do not exhibit any exploration, a fact that may lead to conver-
gence to local optima or even non-convergence in multi-agent learning [Hennes et al.,
2010]. As a resolution, this concept of networks of learning algorithms has been extended
to incorporate exploration in Reverse Engineering State-coupled replicator dynamics in-
jected with the Q-learning Boltzmann mutation scheme (RESQ-learning) [Hennes et al.,
2010]. The designed learning algorithm inherits the convergence behavior of the reverse
engineered dynamical system. In particular. RESQ-learning converges to pure as well
as mixed Nash equilibria in a selection of stateless and stochastic multi-agent games.

In related work, the idea of a network of learning algorithms has been combined with
optimism in uncertainty, inspired by the algorithm R-max [Brafman and Tennenholtz,
2002], to create the algorithmic framework PEPPER that can transform any single-state
learner into a learner for stochastic games [Crandall, 2012]. However, this framework
assumes agents can observe the joint action, and the empirical investigation is lacking
an analytical underpinning.

4.3 Lenient learning in cooperative games

Recently, an evolutionary model of Lenient Q-learning (LQ) has been proposed, provid-
ing theoretical guarantees of convergence to the global optimum in cooperative multi-
agent learning [Panait et al., 2008]. However, experiments reveal discrepancies between
the dynamics of the evolutionary model and the actual learning behavior of the Lenient
Q-learning algorithm, which undermines its theoretical foundation. Moreover it turns
out that the predicted behavior of the model is more desirable than the observed be-
havior of the algorithm. The variant Lenient Frequency Adjusted Q-learning (LFAQ)
combines the advantages of lenient learning in coordination games with FAQ-learning,
inheriting the theoretical guarantees and resolving this issue [Bloembergen et al.,
2010a,b].

The advantages of LFAQ are demonstrated by comparing the evolutionary dynamics
of lenient vs non-lenient Frequency Adjusted Q-learning. In addition, the behavior,
convergence properties and performance of these two learning algorithms is analyzed
empirically. The algorithms are evaluated in the Battle of the Sexes (BoS) and the Stag
Hunt (SH) games with the following payoff matrices, while compensating for intrinsic
learning speed differences.
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Significant deviations arise from the introduction of leniency, leading to profound per-
formance gains in coordination games against both lenient and non-lenient learners.

4.3.1 Lenient Frequency Adjusted Q-learning

It has been shown that leniency, i.e., forgiving initial mis-coordination, can greatly im-
prove the accuracy of an agent’s reward estimation in the beginning of the cooperative
learning process [Panait et al., 2008]. It thereby overcomes the problem that initial mis-
coordination may lead learners to get stuck in local optima with mediocre payoffs. Le-
niency thus increases the probability of reaching the global optimum. Leniency towards
others can be achieved by having the agent collect κ rewards for a single action before
updating the value of this action based on the highest of those κ rewards [Panait et al.,
2008].

An evolutionary model of LQ delivers formal convergence guarantees based on the
idealized model of Q-learning, which has been derived under the assumption that all
actions are updated equally quickly [Tuyls et al., 2003]. However, the action-values in
Q-learning are updated asynchronously and thus at different frequencies: the value of an
action is only updated when the action is selected. Chapter 3 has shown that the ideal-
ized evolutionary model describes more rational behavior than the Q-learning algorithm
actually exhibits. Consequently, the variation Frequency Adjusted Q-learning (FAQ)
has been introduced, which weights the action-value update inversely proportionally to
the action-selection probability, thereby removing initialization dependencies:

Qi(t+ 1)← Qi(t) +
1

xi
α

[

r(t+ 1) + γmax
j

Qj(t) −Qi(t)

]

.

The variation Lenient Frequency Adjusted Q-learning (LFAQ) combines the improve-
ments of FAQ and Lenient Q-learning. The action-value update rule of LFAQ is equal
to that of FAQ; the difference is that the lenient version collects κ rewards before up-
dating its Q-values based on the highest of those rewards. An elaborate explanation of
this algorithm can be found in published work [Bloembergen et al., 2010b].

4.3.2 Experiments and results

This section provides a validation of the proposed LFAQ algorithm, as well as an empir-
ical comparison to non-lenient FAQ. A more elaborate evaluation of the performance of
lenient vs. non-lenient learning algorithms can be found elsewhere [Bloembergen et al.,
2010a].

Figure 4.3 presents an overview of the behavior of Lenient Q-learning and Lenient
FAQ-learning in the Stag Hunt game. Similarly to the validation of FAQ-learning in
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Figure 4.3: Trajectories of LQ-learning and LFAQ-learning (solid lines), and the LFAQ dy-
namics (arrows) in the Stag Hunt.

Section 3.2, the figure shows different initialization settings for the Q-values: pessimistic
(left), neutral (center) and optimistic (right). The arrows represent the directional field
plot of the lenient evolutionary model; the lines follow learning traces of the algorithm.
These results show that the behavior of LQ deviates considerably from the evolutionary
model, and depends on the initialization. LFAQ on the other hand is coherent across
different initialization values, and follows the evolutionary model precisely. Moreover,
the basin of attraction for the global optimum (1, 1) is larger for LFAQ than for LQ,
resulting in an overall payoff advantage for LFAQ.

Figure 4.4 shows policy trajectories of FAQ, LFAQ, and one versus the other in
Battle of the Sexes (BoS) and the Stag Hunt (SH). In BoS, LFAQ has an advantage
against non-lenient FAQ when the two are in competition, indicated by a larger basin
of attraction for its preferred equilibrium at (0, 0). In that equilibrium, LFAQ receives
twice as much reward as FAQ. Intuitively, the optimism of leniency makes LFAQ insist
on its preferred equilibrium just a bit more such that FAQ adapts toward it if undecided,
i.e., x close to 0.5. In the SH, LFAQ outperforms FAQ in self-play with a larger basin
of attraction for the global optimum at (1, 1). Against each other, both algorithms
converge to the same payoff.
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Figure 4.4: Comparing lenient and non-lenient FAQ-learning in two cooperative games.

Finally, Figure 4.5 shows the average reward over time for FAQ (solid) and LFAQ
(dotted) in self-play, as well as for FAQ (dashed) versus LFAQ (dash-dot). Making
explicit what could be conjectured from the behavioral analysis, LFAQ is advantageous
to FAQ, by virtue of achieving either a higher or similar average reward.
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Figure 4.5: Average reward plots for LFAQ-learning and FAQ-learning in self-play and
against each other.
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4.3.3 Discussion

The proposed LFAQ algorithm combines insights from FAQ-learning, as presented in
Chapter 3, and LQ-learning [Panait et al., 2008] and inherits the theoretical advantages
of both. Empirical comparisons confirm that the LFAQ algorithm is consistent with
the evolutionary model [Panait et al., 2008], whereas the LQ algorithm may deviate
considerably. Furthermore, the behavior of LFAQ is independent of the initialization
of the Q-values. In general, LFAQ performs at least as well as non-lenient learning in
coordination games. As such, leniency is the preferable and safe choice in cooperative
multi-agent learning.

4.4 Summary

This chapter has extended the framework for multi-agent reinforcement learning in
three ways: First, the dynamics of FAQ-learning have been derived for exploration
rates that may vary over time. This model has been used to design an appropriate
temperature function that increases the probability of converging to the global op-
timum. Second, the Q-value and policy dynamics have been extended to stochastic
games with multiple states. Dynamics of FAQ-learning and SARSA have been derived
and a related approach based on networks of learning algorithms has been outlined.
Third, Lenient FAQ-learning is proposed to increase the convergence to global optima
in cooperative games. Experiments in simple games have illustrated the theoretical
findings.
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5
New perspectives

This chapter presents two new perspectives on multi-agent learning dynamics. Even
using the framework described in the previous chapters, understanding learning under
conditions that vary over time remains a challenging task. To aid in this challenge, the
next section introduces an orthogonal visualization that makes it possible to gain better
insight into time-dependent properties of multi-agent learning dynamics [Kaisers, 2009].
Section 5.1 demonstrates how this tool facilitates designing time-dependent parameters.
Subsequently, a second new perspective reveals the common ground of reinforcement-
learning algorithms and gradient ascent. From this view it becomes apparent that
multi-agent reinforcement learning implements on-policy stochastic gradient ascent on
the payoff function [Kaisers et al., 2012; Kaisers and Tuyls, 2012]. This result fills a
gap between gradient ascent and evolutionary game theory, which have evolved as
separate streams of inquiry and are now united in the same framework. Given the close
relationship established here, insights in convergent gradient ascent dynamics can, for
example, be taken as an inspiration for analogous independent reinforcement-learning
improvements.

5.1 An orthogonal visualization of learning dynamics

This section introduces a new perspective on the reinforcement-learning process de-
scribed by the replicator dynamics, providing a tool for designing time-dependent
parameters of the game or the learning process. The learning dynamics are commonly
visualized by showing the directional field plot of the replicator dynamics or showing
policy trajectories with the time dimension collapsed into a surface. Both views work
well for dynamics that do not change over time but provide little guidance when the
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game or the learning algorithm uses a parameter that is time-dependent. In particular,
the directional field plot can only capture the dynamics at one point in time. Hence,
several independent plots are needed for changing dynamics and a gap remains in the
transition between them. The trajectory view becomes unclear when cycles occur or
the dynamics change, in which case lines may intersect and clutter the plot. Further-
more, reducing the time dimension into a flat surface hinders the interpretation of
time-dependent artifacts. In addition, the higher the resolution (the more trajectories
that are plotted), the more crowded the plot and the harder it becomes to interpret. As
a result, parameter tuning is a cumbersome task that often results in ad hoc trial and
error approaches. To tackle these problems, a new perspective is proposed that elicits
more information from dynamical systems, especially for time-dependent dynamics,
with the goal of facilitating the systematic design of time-dependent parameters.

5.1.1 Method

This section shows the learning process in a new perspective, which is orthogonal to
viewing policy trajectories in the classical way. Trajectories have a policy component
for each player and a time dimension. Figure 5.1 shows 20 trajectories from three
perspectives: (1) the classical view as a phase space diagram in the policy space with
the time dimension collapsed, (2) an expanded view showing both the policy space and
the time dimension, and (3) the newly proposed orthogonal view. Instead of looking
at it from the top down, one can cut slices at different points in time and look at the
distribution of trajectory points where they intersect these slices that are orthogonal
to the top-down view. Each slice shows the density of trajectory points at a certain
time. Considering distributions rather than single trajectories provides a more holistic
view of the learning process. In the end, learning is a homeomorphic time-dependent
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Figure 5.1: An expanded view of 20 policy trajectories (middle), the common perspective
collapsing the time dimension (left), showing the trajectories as a flat image,
and the proposed orthogonal perspective (right), showing the second slice that
intersects the trajectories at the indicated points.
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transformation of the policy space. As such, its influence on the whole space can be
examined, e.g., by looking at the spacing between the trajectories, rather than only
looking at individual policy trajectories. To do so, a set of particles is drawn from an
initial distribution and subjected to a velocity field defined by the replicator dynamics.
Figure 5.1 shows a uniform initial distribution in the top slice of the expanded view. As
time evolves, the distribution is transformed and the density of the particles changes,
until it is almost converged as in the bottom slice of the expanded view. This diagram
makes it possible to make statements of the following kind: assuming any policy was
initially equally likely and these policies evolve according to the replicator dynamics,
then after time t has passed, p percent of the policies have converged to attractor a
with at most distance ǫ.

After some time, the simulation can be stopped and labels can be applied accord-
ing to the eventual distribution. A certain percentage of particles can be considered
converged to some attractors, assuming they are in the neighborhood of a stable point
and that point is attracting in that neighborhood. Other particles can be labeled as
not converged. Finally, these labels can be applied to earlier slices including the initial
slice, revealing the basins of attraction. Although these basins can also be read from
the directional field plot of the replicator dynamics, this approach is more general as it
can be applied to dynamics that are controlled by a time-dependent parameter.

In addition, this diagram makes possible judging the convergence of a fraction of
the policy space that is bound by a surface by considering the velocity field only on
that surface. Due to the fact that the dynamics describe a continuous process and
the transformation by the replicator dynamics is a homeomorphism, everything that
is added or subtracted from the trapped percentage has to go through the surface.
This observation is related to the divergence theorem from physics [Feynman et al.,
2005]. It enables focussing attention on the surface that may be just a small subspace
of the whole policy space, e.g., a hypersphere with radius ǫ around an attractor. In
many cases, the velocity field in this small neighborhood can be guaranteed to be
rather static although the dynamics of other areas of the policy space may change
quite substantially. A proof for the convergence of FAQ-learning has been proposed
based on this connection to divergence [Kianercy and Galstyan, 2012], complementing
the arguments given in Chapter 3.

This approach makes it possible to employ an arbitrary initial distribution, which
can be used to model specific prior knowledge about the players’ behavior. Commonly,
every policy is assumed to be initially equally likely, i.e., applying an initially uniform
distribution. Furthermore, the policy distribution can also be generated from Q-value
distributions, in case a Q-learning algorithm should be modeled. Using a similar evol-
ution as the replicator dynamics in the Q-value space, the distribution can be evolved,
enabling a comparison of Boltzmann exploration to other exploration schemes that do
not have a bijective action-selection function1 and can therefore not be solely described
by dynamics in the policy space.

1 Strictly speaking, Boltzmann action selection is also not a bijection, as it leaves one degree of
freedom when computing Q-values from policies. However, each policy change relates to a Q-value
change and vice versa, which is not the case in other exploration schemes such as epsilon-greedy.
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5.1.2 Experiments

This section demonstrates the proposed methodology on an example game that is
controlled by a parameter that may change its value at one point in time. The game
describes the following situation:

There are two new standards that enable communication via different
protocols. The consumers and suppliers can be described by probab-
ility vectors that show which standard is supported by which fraction
of the population. One protocol is 20% more energy efficient, hence
the government wants to support that standard. Usually, the profit
of the consumers and suppliers are directly proportional to the frac-
tion of the opposite type that supports their standard. However, the
government decides to subsidize early adopters of the better protocol.

Such subsidies are expensive and the government only wants to spend
as much as necessary. They have no market research information and
consider any distribution of supporters on both sides equally likely.
Furthermore, they know that the supporters are rational and their
fractions will change according to the replicator dynamics. The ques-
tion is, how long is the subsidy necessary to guarantee that the better
standard is adopted in 95% of the possible initial policies.

This scenario is a variation of the pure coordination game. A subsidy parameter
s ∈ {0, 11} is added, which can be used to make one action dominant. As a result,
coordination on the Pareto optimal equilibrium is facilitated. Figure 5.2 displays the
payoff bi-matrix game numerically.

The dynamics of the game can be visualized by showing the directional field plot
of the replicator dynamics as shown in Figure 5.3. It can be observed that a large
fraction of the policy space would converge to the suboptimal standard in the unsub-
sidized game, while all policies would converge to the optimum in the subsidized game.
However, it is difficult to derive the correct time to switch between the two games.

The second classical way to look at the dynamics are policy trajectories. These will
follow the directional change and are depicted in Figure 5.4. Similar to the replicator
dynamics, this view neatly explains the dynamics of the individual parts of the game,
but it is not suitable to infer the right time to switch from the one to the other.
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Figure 5.2: The payoff bi-matrix form of the subsidy game (left) and its realizations for
s = 0 (middle) and s = 11 (right). Player one chooses a row, player two chooses
a column. The first number of the selected action combination represents the
payoff to player one and the second number the payoff to player two.
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Figure 5.3: The learning dynamics of the game with and without subsidy.

Another possible approach is the visualization of trajectories with transitions from
one game to the other at different points in time. Figure 5.5 shows the trajectories of
the subsidy game when transition from s = 11 to s = 0 takes place at t = {0.1, 0.3, 0.5}.
Although it can be observed that fewer trajectories converge suboptimally the later the
switch occurs, this approach requires guessing the right time of transition. Furthermore,
the view is cluttered by intersecting lines and readability does not make it possible to
increase the number of trajectories.

To obtain insight into the time-dependent artifacts of these dynamics, the new
visualization will be applied. Answering the question of when to switch requires 2
steps:
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Figure 5.4: Trajectories with a length of 4 units of continuous time in the game without
subsidy (left) and with subsidy (right).
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Figure 5.5: The trajectory plot for the subsidy game with transition from the subsidized to
the unsubsidized game at t = {0.1, 0.3, 0.5} (left to right).

• Determine the part of the policy space for which trajectories converge optimally
in the unsubsidized game.

• Determine the time when the subsidized dynamics have driven 95% of the initial
policies into the previously determined subspace.

Step one is shown in Figure 5.6. Particles are drawn from a uniform initial distribution
and evolved according to the replicator dynamics. After t = 1.2, the particles are
considered converged and receive a label. Subsequently, the label is applied to all slices
before plotting. From the labels on the initial slice, the basin boundary is deduced using
a linear best fit, which is marked by the dashed line.

In step 2, shown in Figure 5.7, the boundary that has been inferred from step one
is used to monitor the percentage of the initial policy space that would converge to the
optimum if the game was switched at that time instance. The simulation advances until
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Figure 5.6: This figure shows the evolution of particles drawn from a uniform initial distri-
bution, revealing the basins of attraction of the unsubsidized game. Labels are
applied according to the last slice and the dashed line is inferred from the labels
to be the boundary between the basins of attraction.
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Figure 5.7: The top row shows the evolution in the subsidized game until 95% of the policy
space are in the basin for the global optimum of the unsubsidized game. The
lower row shows the further evolution in the unsubsidized game.

the subsidized dynamics have pushed 95% of the initial policies into the basin of attrac-
tion of the global optimum in the unsubsidized game. Then, the game is switched and
the simulation shows convergence to the respective attractors. Repeating the experi-
ment n = 1000 times, the time to bring 95% to the basin is found to be 0.495± 0.0357
(indicating one standard deviation). A histogram of the distribution of convergence
times for this experiment is given in Figure 5.8.

5.1.3 Discussion

As demonstrated on the subsidy game, the orthogonal visualization allows the system-
atic study and design of time-dependent parameters to achieve a specific convergence
behavior. The parameter-design methodology can be transferred to other parameters
that change the replicator dynamics, most prominently the temperature function for
Q-learning with a Boltzmann exploration scheme. Choosing an appropriate temperat-
ure function has long been approached in an ad hoc manner and can now be tackled
systematically to achieve a desired convergence distribution. While a rather simple ex-
ample game was studied for the sake of clarity, the approach is general in the number
of actions and can be applied to arbitrary initial distributions. In addition, it naturally
generalizes to any number of agents.

81



CHAPTER 5. NEW PERSPECTIVES

0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

t
p
e
rc

e
n
ta

g
e
 o

f 
in

s
ta

n
c
e
s

Figure 5.8: Histogram of times at which the velocity field of the subsidized game has driven
95% of the particles into the basin of attraction of the global optimum in the
unsubsidized game. The sample size is n = 1000, with a mean of 0.495 and a
standard deviation of 0.0357.

The ideas presented in this section have a lot of potential to be developed further.
The current approach can be seen as a particle simulation, where the replicator dy-
namics determine the velocity field that describes the movement of each particle, and
the particle density describes a probability distribution. This probability distribution
can equivalently be described as a continuous probability density function, deriving the
density change directly from the replicator dynamics. Such a functional model removes
the stochasticity introduced by approximating the probability density by quantized
particles. The concept of density and change of density has been related to divergence
of a vector field, primarily used in physics, and supports an auxiliary proof to the one
given in Section 3.3 for the convergence of FAQ-learning [Crandall et al., 2011]. A sim-
ilar analysis may be transferred to the distribution of Q-values. Doing so enables the
comparison of exploration schemes such as Boltzmann and epsilon-greedy exploration.
Finally, this model is extendable to multiple states and continuous strategy spaces,
which will compliment the theoretical framework for multi-agent learning.

5.2 Reinforcement learning as stochastic gradient ascent

Gradient ascent on the expected reward has been used to derive convergence guaran-
tees in two-player two-action games, at the expense of strong assumptions such as full
information about the game being available to the players. In contrast, independent
multi-agent reinforcement learning requires less information: it uses feedback from dis-
crete interactions with the environment instead. Algorithms such as Cross learning,
variations of Q-learning and Regret minimization have been related to the replicator
dynamics from evolutionary game theory to obtain insight into their convergence be-
havior. A formal analysis reveals that these algorithms implement on-policy stochastic
gradient ascent, which bridges the gap between two streams of research. Cross learning
for example exhibits convergence behavior equivalent to Infinitesimal Gradient Ascent.
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In addition to the derivations, directional field plots of the learning dynamics in repres-
entative classes of two-player two-action games illustrate the similarities and strengthen
the theoretical findings.

The remainder of this section contains an overview of the dynamics of the differ-
ent algorithms, and highlights their similarities. First, the evolutionary game theor-
etic models that have been derived for Cross learning, Frequency Adjusted Q-learning
and regret minimization are compared using a unified notation. Next, the similarities
between these evolutionary dynamics and the gradient ascent algorithms are derived
for two-player two-action games. Finally, these findings are generalized to normal-form
games.

5.2.1 Evolutionary dynamics of reinforcement learning

Independent reinforcement learning starts from a different premise than gradient ascent.
Instead of assuming full knowledge of the value function, a reinforcement-learning agent
learns from scratch by repeatedly interacting with its environment. After taking an
action, the agent perceives the resulting state of the environment and receives a reward
that captures the desirability of that state and the cost of the action. While the single-
agent reinforcement-learning problem is well-defined as a Markov decision process, the
multi-agent case is more complex. As state transitions and rewards are influenced by
the joint action of all agents, the Markov property is no longer satisfied from a single
agents’ point of view. In essence, each agent is chasing its optimal policy, which depends
on what the other agents do—and since they change as well, all agents chase a moving
target. Nevertheless, single-agent reinforcement-learning algorithms have been shown to
produce good results in the multi-agent case [Busoniu et al., 2008]. Three independent
reinforcement algorithms are examined in detail here: the policy iterator Cross learning,
and the value iterators regret minimization and Q-learning. These algorithms have been
introduced in Chapter 2 but are revisited here for the reader’s convenience.

Cross learning (CL) was the first algorithm to be linked to a dynamical system from
evolutionary game theory [Börgers and Sarin, 1997]. As described in Section 2.5.1, the
learning dynamics of CL in the limit of an infinitesimal update step approach the
replicator dynamics of Equation 2.6. The link between a policy learner like CL and
a dynamical system in the policy space may be rather straight-forward. However, the
link has been extended to value-based learners as well. A model of Q-learning with the
Boltzman update scheme has been proposed [Tuyls et al., 2006], given the additional
assumption of updating all actions simultaneously. The variation Frequency-Adjusted
Q-learning (FAQ-learning), discussed in detail in Chapter 3, implements this model
by modulating the update rule inversely proportionally to the action probability xi,
thereby approximating simultaneous action updates:

Qi(t+ 1)← Qi(t) +
1

xi
α [ri(t) −Qi(t)] .

As derived in Chapter 3, the dynamical system that corresponds to this update rule
can be decomposed into terms for exploitation (the replicator dynamics) and explora-
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tion (randomization based on the Boltzmann mechanism), revealing its relation to the
replicator dynamics:

ẋi =
αxi

τ

[

eiAyT − xAyT
]

︸ ︷︷ ︸
exploitation

−αxi [log xi −
∑

kxk log xk]︸ ︷︷ ︸
exploration

.

Recently, the evolutionary framework has also been extended to the PolynomialWeights
algorithm, which implements regret minimization [Klos et al., 2010]. Despite the great
difference in update rule and policy generation (see Eq. 2.3), the infinitesimal limit has
been linked to a dynamical system with CL dynamics in the numerator.

ẋi =
αxi

[

eiAyT − xAyT
]

1− α [maxk ekAyT − xAyT ]
.

The denominator scales the learning-rate proportional to the best action’s update mag-
nitude.

5.2.2 Similarities in two-player two-action games

For two-agent two-action games, the dynamics can be simplified. Let h = (1,−1),
x = (x1, 1 − x1) and y = (y1, 1 − y1). The dynamics are completely described by the
pair (ẋ1, ẏ1), which denote the probability changes of the first actions for both players.
For CL in self-play, this leads to the following simplified form:

ẋ1 = x1(1− x1)
[

y1hAhT +A12 −A22

]

ẏ1 = y1(1 − y1)
[

x1hBh
T + B21 − B22

]

.

The second player’s update ẏ1 is completely analogous to ẋ1, and will be omitted
in the subsequent discussion. To simplify the notation for two-action games, let ð =

e1AyT−e2AyT = y1hAhT+A12−A22 denote the gradient. The simplified FAQ-learning
dynamics read

ẋ1 = αx1(1− x1)

[

ð

τ
− log

(

x1

1− x1

)]

.

The dynamics of Regret Minimization (RM) are slightly more complex, as the denomin-
ator depends on which action gives the highest reward. This information can be derived
from the gradient: the expected reward for the first action will be a maximum iff ð > 0.
Using this insight, the dynamics of RM in two-action games can be written as follows:

ẋ1 = αx1(1− x1)ð ·

{
(1+ αx1ð)

−1 if ð < 0

(1− α(1− x1)ð)
−1 otherwise.

For Infinitesimal Gradient Ascent (IGA), the update rule can be worked out in a similar
fashion. The main term in this update rule is the gradient ð of the expected reward V ,

84



5.2. REINFORCEMENT LEARNING AS STOCHASTIC GRADIENT ASCENT

which in two-player two-action games can be written in the following form:

∂V(x,y)

∂x1
=

∂

∂x1
(x1, 1− x1)A

(

y1

1− y1

)

= y1(A11 −A12 −A21 +A22) +A12 −A22

= y1hAhT +A12 −A22

= ð.

This derivation reduces the dynamics of the update rule for IGA in two-player two-
action games to ẋ1 = αð.

The extension of the dynamics of IGA to IGA-WoLF and WPL are
straightforward (see Section 2.5.4). Table 5.1 lists the dynamics of the six
discussed algorithms: IGA [Singh et al., 2000], WoLF [Bowling and Veloso,
2002], WPL [Abdallah and Lesser, 2008], CL [Börgers and Sarin, 1997],
FAQ [Kaisers and Tuyls, 2010] and RM [Klos et al., 2010]. It is immediately clear
from this table that all algorithms have the same basic term in their dynamics : the
gradient ð. Depending on the algorithm, the gradient is scaled with a learning-speed
modulation. FAQ-learning yields the only dynamics that additionally add exploration
terms to the process.

Next, the learning dynamics are juxtaposed in representative two-player two-action
games. Three distinct classes can be identified [Gintis, 2009]: games with one pure
Nash equilibrium (e.g. Prisoners’ Dilemma); games with two pure and one mixed NE
(e.g. Battle of the Sexes); and games with one mixed NE (e.g. Matching Pennies). The
normalized payoff bi-matrices of these games are as presented in Figure 5.9.

Since the joint policies in two-player two-action games are completely defined by the
pair (x1,y1), it is possible to plot the learning process in the unit square. Trajectories
can be drawn by following the learning from a specific initial joint policy. Figure 5.10
illustrates learning trajectories in the Matching Pennies, where IGA and CL both cycle

Table 5.1: This table shows an overview of the learning dynamics, rewritten for the spe-
cific case of two-agent two-action games. For simplicity, the common gradient is
abbreviated ð = y1hAhT +A12 −A22.

Alg. Evolutionary model ẋ1 Type
IGA αð

g
ra
d
ie
n
t

a
sc
en
t

WoLF ð ·

{
αmin if V(x,y) > V(xe,y)
αmax otherwise

WPL αð ·

{
x1 if ð < 0
(1− x1) otherwise

CL αx1(1− x1) ð

re
p
li
ca
to
r

d
y
n
a
m
ic
s

FAQ αx1(1− x1)
[

ð ·τ−1 − log
(

x1

1−x1

)

]

RM αx1(1− x1) ð ·

{
(1+ αx1ð)

−1 if ð < 0
(1− α(1− x1)ð)

−1 otherwise
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Figure 5.9: Normalized payoff matrices for three representative two-player two-action games.

around the Nash equilibrium. RM is omitted since it is indistinguishable from CL. The
other three algorithms (WoLF, WPL, FAQ) spiral inwards and eventually converge,
but do so in a different manner. The dynamics of WoLF clearly show the effect of the
Win or Learn Fast scheme, switching between the two distinct learning step values at
x1 = 0.5 and y1 = 0.5. Similarly, the orbits of WPL yield a less steep corner when
switching between the two update schemes.

Figure 5.11 shows a directional field plot of the learning dynamics in the Prisoner’s
Dilemma, Battle of the Sexes, and Matching Pennies game. Each arrow indicates the
direction of change at that point (x1,y1) in the policy space. Again, the dynamics
of RM can be considered equivalent to CL. The figure illustrates the high similarity
between all algorithms in the first two games. They all share the same convergence
properties, and follow similar trajectories. The dynamics of IGA and WoLF in the
Prisoners’ Dilemma show the need for the projection function to prevent the update
from taking the policies x and y out of the valid policy space. The largest variety is
observed in the MP game as illustrated before in Figure 5.10.
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Figure 5.10: This figure shows trajectories of the algorithms from the same starting point
(indicated with ⊕) in the Matching Pennies game. IGA and CL yield stable
cycles, while WoLF, WPL and FAQ-learning converge to the mixed Nash equi-
librium
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. WoLF uses αmin
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= 0.1, and FAQ uses τ = 0.1.

86



5.2. REINFORCEMENT LEARNING AS STOCHASTIC GRADIENT ASCENT

Prisoners’ Dilemma Battle of the Sexes Matching Pennies

IGA

0 0.5 1
0

0.5

1

y
1

 

0 0.5 1
0

0.5

1

 

0 0.5 1
0

0.5

1

 

WoLF

0 0.5 1
0

0.5

1

y
1

 

0 0.5 1
0

0.5

1

 

0 0.5 1
0

0.5

1

 

WPL

0 0.5 1
0

0.5

1

y
1

 

0 0.5 1
0

0.5

1

 

0 0.5 1
0

0.5

1

 

CL

0 0.5 1
0

0.5

1

y
1

 

0 0.5 1
0

0.5

1

 

0 0.5 1
0

0.5

1

 

FAQ

0 0.5 1
0

0.5

1

x1

y
1

 

0 0.5 1
0

0.5

1

x1

 

0 0.5 1
0

0.5

1

x1

 

Figure 5.11: This figure shows the learning dynamics of the various algorithms in the Prison-
ers’ Dilemma, Battle of the Sexes, and Matching Pennies. The dynamics of RM
are visually indistinguishable from CL in this scenario. The Nash Equilibria are
indicated with •. WoLF uses αmin

αmax
= 0.1, and FAQ uses τ = 0.1.
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5.2.3 Generalization to normal form games

The previous subsection juxtaposes multi-agent reinforcement learning with gradient
ascent in two-action games. This section presents the more general case of normal form
games, where each player has a finite discrete set of actions, and x = (x1, x2, . . . , xn)
such that

∑
i xi = 1 and ∀xi : 0 6 xi 6 1. The first constraint imposes

∑
i ði = 0 on the

gradient, where ði is the i
th component of the gradient, i.e., ði is the partial derivative

of the value function with respect to xi. Gradient ascent uses a projection function
to ensure these constraints are fulfilled, while multi-agent reinforcement-learning al-
gorithms inherently maintain that property, e.g., generating valid policies from value
estimations that are iteratively improved.

The value function in n-player normal form games is defined as V(x, ŷ) =
∑

i xifi(ŷ) = xf(ŷ), where fi(ŷ) denotes the payoff of action i against the set of n− 1
opponents following strategies ŷ = (y1,y2, . . . ,yn−1). In two-player normal form games
fi(y) = (AyT )i. The ith element of the gradient can be calculated as the partial de-
rivative of V with respect to xi. Let ei denote the ith unit vector; the differential with
respect to xi can then be defined as δei. However, recall that IGA projects x + ∆x

onto the tangent space of x. This update is equivalent to normalizing δei using the
orthogonal projection function Φ(ζ) = ζ − 1

n

∑
j ζj [Sandholm, 2010]. The gradient

that IGA uses according to Equation 2.8 in normal form games can be written as

∂V(x, ŷ)

∂xi
= lim

δ→0

[x+Φ(δei)] f(ŷ) − xf(ŷ)

δ

= Φ(ei)f(ŷ)

= fi(ŷ) −
1

n

∑
j fj(ŷ).

Using u = ( 1
n
, . . . , 1

n
), the expected update of IGA is ẋi = α [fi(ŷ) − uf(ŷ)]. Note that

this algorithm updates all actions simultaneously.
Let us now assume the gradient is not known, but needs to be sampled for one

action at a time. A stochastic version of IGA with the same dynamics, but only one
action being updated at a time, would necessarily sample all actions equally often. In
other words, it would execute u while estimating the value of x, which means it is an
off-policy algorithm. The expected update of stochastic IGA is ẋi = αui [fi(ŷ) − uf(ŷ)].

In a multi-agent learning setup, learning off policy would however make it impossible
for the other player to learn about the first, because the first player is not executing the
policy he considers best. Self-play illustrates the futility of learning off-policy against
each other: ẋi = ui

[

eiAuT − uAuT
]

. Eventually, the player is going to use what has
been learned off-policy, and switch from executing u to x, and any other player would
be faced with a sudden change in his environment that may now be nothing like it
was before. The other player may now completely disregard what he learned about
playing against u, and restarts learning once the first player is on-policy. For symmetry
reasons, this means also the first player can restart learning. In conclusion, multi-agent
reinforcement learning needs to be on-policy, and therefore stochastic gradient ascent
would need to sample on-policy. Sampling on-policy yields different update frequencies
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for each action resulting in the replicator dynamics ẋi = xi [fi(ŷ) − xf(ŷ)], which are
at the core of multi-agent reinforcement-learning algorithms. It follows that multi-
agent reinforcement learning implements on-policy stochastic gradient ascent, which in
contrast to off-policy reasoning, is able to learn from discrete interactions in normal
form games.

5.2.4 Discussion

The gradient ascent dynamics assumes that the gradient is known or can be computed
by the agent. This assumption is typically not fulfilled in reinforcement-learning prob-
lems. The merits of gradient ascent dynamics are more theoretical—it makes conver-
gence guarantees possible at the cost of stronger assumptions. Similar guarantees have
also been derived for evolutionary models of independent multi-agent reinforcement
learning. For example, the dynamics of FAQ-learning have been thoroughly analyzed in
two-agent two-action games showing convergence near Nash equilibria (see Chapter 3).
These guarantees either study newly derived variations as for FAQ-learning, or they
draw on well established models from evolutionary biology, e.g., the cyclic behavior of
the replicator dynamics is a well studied phenomenon [Hofbauer and Sigmund, 2002].
The findings presented in this section reveal the commonalities of gradient ascent and
the replicator dynamics. REINFORCE algorithms [Williams, 1992] estimate the gradi-
ent of the reinforcement function from samples, and thus lies at the intersection of
gradient ascent and the replicator dynamics. If these samples are taken off policy,
single-agent behavior would follow the gradient ascent dynamics but agents would not
exhibit their learned behavior, and would in multi-agent settings not learn anything
meaningful about each other. Hence, any stochastic gradient ascent algorithm that
should learn from discrete interactions of several agents needs to be on-policy, and
will behave in essence equivalently to the replicator dynamics, e.g., the linear-reward-
inaction variant of REINFORCE is equivalent to a simple learning automaton and
thereby also equivalent to Cross learning [Williams, 1992], which in turn maps exactly
to the replicator dynamics [Börgers and Sarin, 1997].

5.3 Summary

This chapter provides two new perspectives on multi-agent learning dynamics. First,
an orthogonal visualization for time-dependent dynamical systems has been proposed,
supporting efforts to study and design time-dependent parameters. An illustrative ex-
ample of a two-agent two-action game was discussed, and the method has been shown to
naturally reveal time-dependent properties of the system. Doing so facilitates design-
ing parameters with a systematic approach rather than setting them in an ad hoc
manner. Moving from the traditional time-collapsed view of trajectories to an evolving
density perspective also opens up new ways of analyzing the behavior formally, e.g., a
formal concept of density and divergence has been used to provide an auxiliary proof
of convergence for FAQ-learning dynamics [Kianercy and Galstyan, 2012].
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Second, this chapter relates two seemingly diverse families of algorithms within the
field multi-agent learning: gradient ascent and independent reinforcement learning. The
main contributions can be summarized as follows: First, the replicator dynamics are
identified as the core building block of various types of independent reinforcement-
learning algorithms, such as Cross learning, regret minimization, and Q-learning.
Second, the learning dynamics of these algorithms are juxtaposed with variants of gradi-
ent ascent in two-player two-action games, highlighting the similar structure around the
gradient of the expected reward. Third, multi-agent reinforcement learning is shown to
implement on-policy stochastic gradient ascent in normal form games. Recognizing the
connection to on-policy stochastic gradient ascent provides a basis for studying what
is learnable with independent reinforcement-learning algorithms in multi-agent games.
This framework may be taken as a basis for establishing lower bounds on performance
in multi-agent games similar to Probably Approximately Correct Learning guarantees
in single-agent learning. I leave this direction as an open problem for future research.
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6
Applications

This chapter presents an evolutionary analysis of meta strategies in auctions and
poker. I follow the methodology introduced by Walsh et al. [Walsh et al., 2002]: Meta
strategies are evaluated in a competition of n agents, and the expected payoff to each
strategy is captured in a heuristic payoff table as explained in Section 2.4.3. This
table can subsequently be used to approximate the payoff in an infinite population
that evolves according to the replicator dynamics. This methodology is most applic-
able in domains where players choose between a small number of known strategies.
The evolutionary analysis reveals which combination of these strategies is most likely
to prevail if the agents repeatedly interact, and in which constellations they dominate
other strategies. This chapter is based on previously published work [Hennes et al.,
2012; Ponsen et al., 2009].

6.1 The value of information in auctions

This section presents an analysis of the competitive advantage of price signal informa-
tion for traders in simulated double auctions. Previous work has established that more
information about the price development does not guarantee higher performance. In
particular, traders with limited information perform below market average and are
outperformed by random traders; only insiders beat the market. However, this result
has only been shown in markets with a few traders and a uniform distribution over
information levels. Here, additional simulations of several more realistic information
distributions extend previous findings. Furthermore, the market dynamics are ana-
lyzed with an evolutionary model of competing information levels. Results show that
the highest information level will dominate if information comes for free. If information
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is costly, less-informed traders may prevail reflecting a more realistic distribution over
information levels.

Markets play a central role in today’s society, and range from stock markets to
consumer-to-consumer e-commerce [Angel, 2002; Bajari and Hortacsu, 2003]. Economic
theory often starts from perfect competition as an idealized assumption about markets.
It relies, among other characteristics, strongly on a symmetric information structure.
All traders have access to the same information about price and quality of goods. Many,
if not all, of today’s markets do not meet this utopian assumption and thus valorize
the access to information. Undoubtedly, information is an important factor that has
influence on trading success or losses. Insiders are clearly able to use their information
to outperform the market. However, the relation between information level and success
is not trivial.

6.1.1 Related work

Market forecasters and fund managers are generally assumed to be well informed,
though for the most part perform below market average. Cowles [Cowles, 1933] has
been the first to study this phenomenon and reports that a group of trained forecasters
performed 4% below market average during a period of 4.5 years. These findings have
since been confirmed by multiple studies; for an overview, the interested reader may
consult prior work [Kirchler, 2010; Tóth et al., 2007], in particular Malkiel [Malkiel,
2003], which reports on returns of actively managed funds over a period of 30 years—
fewer than 15% of the funds outperformed the market.

Toth et al. [Tóth et al., 2007] study the relation between information and perform-
ance for traders with various information levels both in simulation and human ex-
periments. Average-information traders perform below market level, while uninformed
traders reach the market average; highly informed traders beat the market. These res-
ults suggest that if a trader has no inside information, trading based on current market
prices (uninformed) is most sensible. Relying on outdated or average information has
a negative impact on returns.

Prior work [Huber et al., 2008; Kirchler, 2010] has investigated whether this neg-
ative impact can be explained by behavioral patterns. In particular, the authors test
the hypothesis that low performance of average-information traders is the result of
overconfidence, i.e. overestimating the value of (possibly outdated) information. Res-
ults show that traders do not exhibit overconfidence and low returns are caused by
the asymmetric information structure itself. Huber [Huber, 2007] offers the following
explanation: during trends, foresight is clearly advantageous. When the trend reverses,
the average-information trader trusting its information performs worst due to outdated
information. Non-informed (random) traders are safe from these systematic mistakes
and instead gain and lose in roughly equal measure.

The vast body of previous work [Huber, 2007; Huber et al., 2008; Kirchler, 2010;
Tóth and Scalas, 2007; Tóth et al., 2006, 2007] has evaluated the advantage of inform-
ation in markets from various perspectives. However, only markets with a limited num-
ber of agents and uniformly distributed information levels have been considered, and
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information was assumed to be free. This study investigates several more realistic in-
formation distributions in larger markets. Furthermore, the analysis is extended by
studying an infinite population of traders using an evolutionary model and demon-
strate the influence of the price of information on market dynamics.

Recent work on automated mechanism design employs a similar evolutionary ana-
lysis, but is based on a different auction-simulation platform that does not use dividends
for driving the price signal [Phelps et al., 2006, 2010a,b]. A wider taxonomy of auctions
is available [Friedman, 1993; Parsons et al., 2011].

Auctions

Auctions are highly efficient match-making mechanisms for trading goods or services.
As such, they are employed by a number of real markets, such as telecommunic-
ation spectrum rights auctions or the New York Stock Exchange (NYSE) [Angel,
2002; McMillan, 1994]. In practice, there are a variety of rules that may be used to
conduct an auction. Each set of rules may result in different transaction volumes,
transaction delays, or allocative market efficiency. One-sided auctions, especially
with one seller and many potential buyers, are popular in consumer-to-consumer e-
commerce [Bajari and Hortacsu, 2003; Barrot et al., 2010]. Here, the focus is on double
auctions, which essentially provide a platform for buyers and sellers to meet and ex-
change a commodity against money. A taxonomy of double auctions especially tailored
to automated mechanism design can be found in the literature [Niu et al., 2012].

Double auctions maintain an open book of bids (offers to buy at a specified price)
and asks (offers to sell at a specified price). Two principle forms are the clearing house
or continuous operation. In a clearing house auction, orders are collected for a trading
period (e.g., one day) and matched, or cleared, after the trading period is closed.
This mode of operation allows for high allocative efficiency, but incurs delays in the
transactions. In contrast, continuous operation immediately establishes a transaction
as soon as some buyer is willing to pay more than a seller is asking for. This mode
allows higher transaction rates at the cost of some allocative efficiency. Experiments in
this section will use continuous operation mode, since it reflects the day-time operation
mode of the NYSE [Angel, 2002].

Value of information

It is common sense that training and additional information should increase perform-
ance for any task. However, the value of information in markets is non-monotonic, i.e.,
having some information may be worse than having none.

To measure the value of information, experiments in auctions measure revenue.
Since revenue is heavily dependent on market conditions dictated by the price signal,
it is normalized to reflect the relative return. Assume trader i receives revenue ri. The
average profit ravg = 1

n

∑
i ri in a market is used to compute the relative market return

ui =
ri

ravg
− 1 for each trader.

Figure 6.1 shows relative market return over information levels in a market with
n = 10 agents, one agent for each of 10 information levels, where level 0 represents
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Figure 6.1: Relative market return over information level. 10 traders with information level
0 to 9 (1 trader for each level).

random traders (as formally defined in Section 6.1.2). The revenue follows a J-curve,
which means that random traders perform at market average while weakly informed
traders are exploited by insiders. This result holds both in abstract market models that
can be simulated and in experiments with human participants [Tóth et al., 2007].

Previous research has demonstrated the viability of evolutionary game theory to
analyze meta strategies in simulated auctions, and to compare clearing house against
continuous double auctions [Kaisers et al., 2009; Phelps et al., 2005]. A similar analysis
procedure is used here, but the data is generated by a different model described in the
following section.

6.1.2 Market model

To analyze the advantage of foresight, a stock market is simulated with agents having
different amounts of information on future prices, or information levels, trade a certain
asset. This design closely follows the market model used in prior studies [Huber et al.,
2008; Tóth and Scalas, 2007] to be comparable. The market is based on a continuous
double auction with open order book, in which all traders can place bids and asks for
shares. The intrinsic value of the shares is determined by a dividend stream that follows
a random walk

Dt = Dt−1 + ǫ (6.1)

where Dt denotes the dividend in period t with D0 = 0.2, and ǫ is a normally dis-
tributed random term with µ = 0 and σ = 0.01, i.e., ǫ ∼ N(0, 1). Figure 6.2 shows an
example dividend stream.
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Figure 6.2: The dividend stream, following a Brownian motion.

The market is simulated over 30 trading periods, each lasting 10 · n time steps,
where n is the number of traders present. All traders start with 1600 units cash and
40 shares, each worth 40 in the beginning. At the beginning of each period, all traders
can put a bid or ask in the book (opening call). Hereafter, at every time-step a trader
is selected at random who can then place a bid or ask according to its trading strategy
(see below). At the end of each period, a dividend is paid based on the shares owned,
and risk free interest rate (0.1%) is paid over cash. The performance of the traders is
measured as their total wealth after the 30 periods, i.e., each share is valued according
to the discounted future dividends (see below) and added to the cash reserves.

The different information levels are implemented by varying the amount of know-
ledge that traders have about the future dividends. In general, a trader with information
level Ik knows the dividend of this and the next (k − 1) periods. Traders with inform-
ation level I0 have no information about dividends and can only observe the current
market price. This situation results in a cumulative information structure, where in-
siders know at least as much as average-information traders. The information that the
traders receive each period is the conditional present value of the shares, conditioned
on their information level. This value can be calculated using the dividend discount
model (Gordon growth model) as

E(V |Ij, k) =
Dk+j−1

(1 + re)j−2re
+

k+j−2∑

i=k

Di

(1+ re)i−k
(6.2)
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where V denotes the value, Ij is the information level, k the period, and re the risk-
adjusted interest rate (set to 0.5% in all experiments).

6.1.3 Trading strategies

Two different trading strategies are used in the experiments. Traders that have at least
some information about the dividend stream (I1 and higher) use the fundamentalist
strategy, that takes this information into account. Traders without any information (I0)
use the random strategy, in which their bids and asks are based purely on the current
market price of the shares.

Fundamentalists

Fundamentalists completely rely on the information they receive. The fundamentalist
strategy is explained in Algorithm 1 [Tóth and Scalas, 2007; Tóth et al., 2006]. In es-
sence, they compare their estimated present value E(V |Ij, k) with the current best bid
and ask in the book. If they find a bid (ask) with a higher (lower) value than their
estimate, they accept the offer. Otherwise, they place a new order between the current
best bid and ask prices. Naturally, the trader should own enough shares or cash to
accept or place an order.

Algorithm 1 Fundamentalist trading strategy

pv← E(V |Ij, k) {private value}
if pv < bestBid then
acceptOrder(bestBid)

else if pv > bestAsk then
acceptOrder(bestAsk)

else
∆ask = bestAsk− pv

∆bid = pv − bestBid
if ∆ask > ∆bid then
placeAsk(pv + 0.25 · ∆ask ·N(0, 1))

else
placeBid(pv + 0.25 · ∆bid ·N(0, 1))

end if
end if

Random traders

The random trading strategy only takes the current market price into account when
deciding whether to accept or place an order. With equal probability the trader sells or
buys shares. The random trading strategy is explained in Algorithm 2. This algorithm
is used to be consistent with previous work [Tóth and Scalas, 2007; Tóth et al., 2006];
however, results do not change if the Fundamentalist strategy with the market price as
the private value is used instead of the random traders.
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Algorithm 2 Random trading strategy

pv← current market price {private value}
if U(0, 1) < 0.5 then
ask = pv+ 2 ·N(0, 1)
if ask < bestBid then
acceptOrder(bestBid)

else
placeAsk(ask)

end if
else
bid = pv + 2 ·N(0, 1)
if bid > bestAsk then
acceptOrder(bestAsk)

else
placeBid(bid)

end if
end if

6.1.4 Evaluation of selected information distributions

The market is simulated with varying numbers of agents for each information level
to analyze the relative performance of agents with different amounts of foresight. To
reduce the effect of randomness, 100 sessions of 100 simulations each are performed; the
dividend stream is fixed for each session. Results are given as the relative performance
with respect to the market average plotted against the information levels.

Figure 6.1 (see page 94) shows the results for a market of 10 agents in 10 inform-
ation levels: one random trader, I0, and 9 fundamentalists, I1 . . . I9. As can be seen,
performance does not necessarily increase with more information: the random trader
performs at market average, whereas traders with limited amounts of information do
significantly worse. Only highly informed traders are able to beat the market.

This result is in line with related work, where a similar shaped J-curve was re-
ported [Kirchler, 2010; Tóth and Scalas, 2007]. This relation between information level
and performance, where more information is not always better, has also been observed
in market experiments involving human traders [Huber et al., 2008]. A possible explan-
ation is that random traders are by definition not predictable, and therefore hard to
exploit by insiders. On the other hand, experts can more easily predict and exploit
traders with limited or average information levels.

Previous work has mainly focussed on small scale markets, with uniform and
static distributions of traders over information levels [Huber, 2007; Huber et al., 2008;
Kirchler, 2010; Tóth and Scalas, 2007; Tóth et al., 2006, 2007]. This focus on the small
may overly simplify reality, which may in turn influence the reported findings. For ex-
ample, a market will be more likely to contain only a small number of insiders, and
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a large group of average-information traders. Furthermore, having only one trader per
information level rules out within-group trading, which could bias results.

Previous studies [Kirchler, 2010; Tóth and Scalas, 2007] are extended here by look-
ing at markets with more traders and non-uniform distributions of traders over inform-
ation levels. An overview of relative market returns for a selection of information distri-
butions is given in Figure 6.3. Next to the uniform distribution used in previous work,
simulations with a normal distribution and a power-law distribution over information
levels are evaluated. These distributions are chosen to reflect information distributions
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Figure 6.3: Relative market return over information level (right) for various information
distributions (left) given a finite population of 100 traders.
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that are likely to be found in real markets. It is impossible to observe these distributions
directly as the information level is private to the trader [Huber et al., 2008]. The two
chosen distributions follow from natural assumption: (1) normal distributions arise if
access to information is cumulative based on independent and identically distributed
bits of information; (2) the power-law distribution is motivated by a information flow
in scale-free social networks where every trader has access to information of his social
ties.

As can be seen from this figure, random traders perform at market average under
all three distributions, and traders with limited information underperform the market.
However, the shape of the curve does change considerably depending on the inform-
ation distribution. Where in the uniform scenario only traders with information level
I6 or higher outperform the market, for the normal distribution it is the case for I5
and for the power-law distribution for I4. However, the J-curvature is found to be rel-
atively insensitive to changing information distributions and numbers of traders. Only
in extreme cases (not shown here) does the curve change drastically.

Figure 6.4 shows that relative market returns follow the J-curve even in small mar-
kets with only three information levels: random traders, average-information traders,
and insiders. Again, this finding is in line with previous work, where a similar setup
was shown to reflect stylized facts such as autocorrelation observed within real mar-
kets [Tóth et al., 2007]. Note that the obtained curve does not change qualitatively
when varying the information level of average-informed traders: any choice between
{I0, I1, I9} and {I0, I8, I9} results in a J-curve.
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Figure 6.4: Relative market return over information level. 1 trader for each of the information
levels 0, 3 and 9.
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Discussion

The J-curve of relative market returns over information levels that has been observed
in previous work has been reproduced. Furthermore, the specific shape of this curve
also prevails if the distribution over information levels changes. This finding indicates
that the conclusions drawn from this may hold under more realistic settings as well.

This perspective still assumes that the distribution over information levels does not
change over time. There are several ways this assumption may be violated in practice:
First, traders may choose to acquire more information or not. For example, traders
may or may not subscribe to financial news sources, which in turn determines their in-
formation level—possibly at a cost. The effect of having traders choose between trading
strategies has been investigated [Kirchler, 2010; Tóth and Scalas, 2007], with the con-
clusion that only highly informed traders will choose their fundamental strategy, taking
their information into account. Second, traders may take over a larger market share
due to their financial success while others are driven out of the market. This observa-
tion motivates the evolutionary analysis that accommodates evolving distributions in
information levels, and elicits the market dynamics.

6.1.5 Evolutionary analysis

The previous section provides a method for computing expected relative market reven-
ues for selected information distributions. This method views information distributions
as isolated and fixed in time. However, the market revenue can be interpreted as Dar-
winian fitness, such that traders performing below market average should be driven
out of the market, while those with higher returns prevail. This section will first in-
troduce the evolutionary analysis methodologically, list the results and discuss their
implications.

The evolutionary model assumes an infinite population. The payoff for such a pop-
ulation cannot be computed directly, but it can be approximated from evaluations of
a finite population. For this purpose, the heuristic payoff table is used as described in
Section 2.4.3. The expected payoff in an infinite population model can be computed
from the heuristic payoff table and is used in Equation 2.6 to compute the evolutionary
change according to the replicator dynamics.

Experimental setup and results

The experiments of this section comprise two elements. An evolutionary analysis of an
infinite population is performed to elicit the dependence of revenue on the presence of
other information levels. In addition, selected population distributions are approxim-
ated with a finite population and illustrate revenue distributions for interesting points.
The evolutionary analysis is based on the market model described in Section 6.1.2 and
uses the method described in the previous section to compute payoffs and the replicator
dynamics for an infinite population of traders with arbitrary and evolving information
distributions. The heuristic payoff tables are computed for n = 12 traders distributed
over the information levels I0, I3 and I9, leading to 91 rows.
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Figure 6.5 shows the evolutionary dynamics of the market model. Four repres-
entative population distributions are evaluated in more detail in a finite population of
n = 100 traders to illustrate the revenue structure for the individual information levels.
The evolutionarily stable state is a global attractor, where only insiders prevail. The re-
lative market performance for the four selected finite distributions of traders highlights
again the J-curve observed before. Even though uninformed traders perform close to
market average, insiders take advantage of their knowledge and take over the market.
However, their competitive advantage is vanishing as they are facing more and more
competitors of the same information level (see top-right revenue graph of Figure 6.5).

Note that up till now, information was freely available to all traders. However, it
is reasonable to assume that gathering more information is costly. In the most simple
case, a fixed cost for information might be incurred leading to a possible advantage of
uninformed traders as they do not have to pay this price. More realistically, costs could
also increase with the amount of information gathered, for example using a quadratic
cost function such that average-information traders pay only a little whereas insiders
pay the full price. This scheme relates to a real-world scenario where average traders
only subscribe to financial newspapers or magazines, whereas insiders may need to hire
experts to gain their information advantage.

Figure 6.6 shows the market dynamics in both cost scenarios. The fixed cost is set
to 5 units cash per trading period for information levels I3 and I9, uninformed traders
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Figure 6.5: The central simplex shows the evolutionary dynamics of an infinite population
mixing between the information levels 0, 3 and 9. Relative market revenue over
information levels is given for four selected finite distributions: top-left (33, 33,
33) which reflects a uniform distribution, bottom-left (80, 10, 10), top-right (10,
10, 80), bottom-right (10, 80, 10).
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Figure 6.6: Evolutionary market dynamics using a fixed cost (left) and quadratic cost func-
tion (right) for information levels 0, 3 and 9.

pay nothing. The quadratic cost function used is

i2

92
· 15,

where i is the information level, resulting in a maximum cost of 15 units cash for insiders
per trading period. As can be observed, introducing cost leads to significantly different
and more complex dynamics. In the constant cost scenario, the evolutionary advantage
of insiders decreases in favor of uninformed traders, leading to an equilibrium state
where insiders and uninformed traders co-exist. Using a quadratic cost function gives
rise to an interior equilibrium, where all information levels prevail.

6.1.6 Discussion

Information does come at a cost in real markets, which has been neglected in much of the
related work [Huber, 2007; Huber et al., 2008; Kirchler, 2010; Tóth and Scalas, 2007;
Tóth et al., 2006, 2007]. Evolutionary analysis under different cost functions indicates
that costs can significantly alter the market dynamics and allow less-informed traders
to prevail.

The results contribute to the ongoing debate about the strong-form efficient-market
hypothesis, which has a large following and growing number of critics [Fox, 2009]. It
states that prices in financial markets instantly reflect all information available to par-
ticipating traders, including insider information. Evolutionary pressure drives a market
toward an information distribution at which the market is strong-form efficient, pos-
sibly driving some information levels extinct in the process. However, the evolutionary
process will only end in equilibrium for an isolated system; in real markets, traders
that enter the market with information and money from other sources continuously
perturb the system. As a result, real markets may be found off-equilibrium almost all
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the time. It is up to future experiments to quantify the influence of arriving traders on
perturbation from the equilibrium.

The literature has established a link between human traders and a market model
that can be rigorously analyzed in simulation. In this section, this link has been ex-
ploited in the following ways: (1) The value of information in markets has been con-
firmed to follow a J-curve for several more realistic information distributions. (2) The
evolutionary advantage of information makes insiders drive less-informed traders out
of the market, with a diminishing competitive edge. (3) If information comes at a cost,
less-informed traders may prevail in the market.

The experiments that have been carried out for this section were limited to an
evolutionary analysis of three competing information levels. While this design choice is
sufficient for demonstrating the arguments within this section, the evolutionary analysis
naturally extends to four or more strategies. As such these findings pave the way
for larger scale comparisons. In addition, future work may test the hypothesis that a
market’s informational efficiency is perturbed by traders moving in or out of a market.

6.2 Meta strategies in poker

In this section, the strategic interaction in the game of poker is analyzed by applying the
evolutionary analysis to data gathered from a large number of real world poker games.
This study uses two Replicator Dynamics models: First, the basic selection model
is used to study the empirical data; second, an extended model that includes both
selection and mutation is evaluated. These two models elicit the dynamic properties
by describing how rational players and players with limited rationality switch between
different strategies under different circumstances, what the basins of attraction of the
equilibria look like, and what the stability properties of the attractors are. The dynamics
are illustrated using a simplex analysis. Experimental results confirm existing domain
knowledge of the game, namely that certain strategies are clearly inferior while others
can be successful given certain game conditions.

6.2.1 Introduction

Although the rules of the game of poker are simple, it is a challenging game to master.
There are many books written by domain experts on how to play the game [Brunson,
1979; Harrington, 2004; Sklansky, 1987]. A general advice given to human players is
that a winning poker strategy should be adaptive: a player should change the style
of play to prevent becoming too predictable, but moreover, the player should adapt
the game strategy based on their opponents. In the latter case, players may want to
vary their actions during a specific game [Davidson et al., 2000; Ponsen et al., 2008;
Southey et al., 2005], but they can also consider changing their strategy over a series
of games (e.g., play a more aggressive or defensive style of poker).

In this section, an evolutionary game theoretic analysis of poker strategies is ap-
plied to data from real world poker games played between human players. More pre-
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cisely, I investigate the strengths of a number of poker strategies facing some oppon-
ent strategies using Replicator Dynamics (RD) models [Hofbauer and Sigmund, 2002;
Maynard Smith, 1982; Taylor and Jonker, 1978; Tuyls et al., 2006]. Replicator dynam-
ics are a system of differential equations describing how strategies evolve through time.
Here, two of such models are examined. The first RD model only includes the biological
selection mechanism. Studies from game theory and reinforcement learning indicate
that people do not behave in purely greedy and rational ways in all circumstances but
also explore different available strategies (to discover optimal strategies) for which they
are willing to sacrifice reward in the short term [Gintis, 2009; Sutton and Barto, 1998].
It is thus critical to include mutation as an exploration factor to the RD model to find
accurate results. To account for exploration, a second RD model that includes both
selection and mutation terms is applied.

Several heuristic strategies are defined, i.e., strategic behavior over large series of
games, and a heuristic payoff table is computed that assigns payoffs to each of these
strategies. This approach has been used to analyze the behavior of buyers and sellers in
automated auctions, e.g., as presented in Section 6.1 or in the literature [Phelps et al.,
2004; Vytelingum et al., 2007; Walsh et al., 2002], and it is described in detail in Sec-
tion 2.4.3. Conveniently, for the game of poker, several heuristic strategies are already
defined in the poker literature and can be used in the analysis.

The innovative aspects of this study are twofold: First, although there are good
classical game-theoretic studies of poker, they are mainly interested in the static prop-
erties of the game, i.e. what the Nash equilibria are and how to explicitly compute
or approximate them. Due to the complexity of this computation, usually simplified
versions of poker are considered [Billings et al., 2003]. Instead, here an evolutionary
perspective sheds light on this game using two different RD models. This use of RD
enables the investigation of the dynamic and interactive properties of play by studying
how rational players switch between different strategies when faced with a certain com-
position of competing strategies. In addition, study of the dynamics reveals the basins
of attraction of the equilibria, and what the stability properties of the attractors are.
These new insights help to unravel the complex game of poker and may prove useful
for strategy selection by human players, but can also aid in creating strong artificial
poker players. Second, this analysis is based on real world data that is obtained by
observing poker games at an online website, wherein human players competed for real
money at various stakes. From this real world data, the heuristic payoff table is derived,
as opposed to the artificial data used in the previously mentioned auction studies. By
analyzing real world data, the claims put forward by domain experts on the issue of
strategy selection in poker can be validated empirically.

The remainder of this section is structured as follows. First, the specific poker
variant under examination is explained, namely No-Limit Texas Hold’em poker, and
some well-known strategies for this game are described. Next, I elaborate on the RD
method and continue with a description of the methodology. Finally, experiments are
presented and discussed, and the section closes with some conclusions.
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6.2.2 Background

In the following, the rules of the game of poker are briefly summarized. Subsequently,
I list several ways of categorizing poker strategies according to domain experts.

Poker

Poker is a card game played between at least two players. In a nutshell, the objective
in poker is to win games (and consequently win money) by either having the best card
combination at the end of the game, or by being the only remaining active player.
The game includes several betting rounds wherein players are allowed to invest money.
Players can remain active by at least matching the largest investment made by any of
the other players, or they can choose to fold (i.e., stop investing money and forfeit the
game). The winner receives the money invested by all the players within this game. In
practice, players can join and leave tables, and at each table games are played with a
group of players that remains the same for many games. Many variations have been
devised concerning both the rules of the game as well as the rules for joining and leaving
a table.

This study analyzes the strategic elements within the most popular poker variant,
namely No-Limit Texas Hold’em. This game includes 4 betting rounds (or phases),
respectively called the pre-flop, flop, turn and river phases. During the first betting
round, all players are dealt two private cards (usually refered to as a player’s hand)
that are only known to that specific player. To encourage betting, two players are
obliged to invest a small amount the first round (the so-called small- and big-blind).
One by one, the players can decide whether or not they want to participate in this game.
If they indeed want to participate, they have to invest at least the current bet. This
investment is known as calling. Players may also decide to raise the bet. If they do not
wish to participate, players fold, resulting in loss of money they bet thus far. A betting
round ends when no outstanding bets remain, and all active players have acted. During
the remaining three betting phases, the same procedure is followed. In every phase,
community cards appear on the table (respectively, 3 in the flop phase, and 1 in the
other phases). These cards apply to all the players and are used to determine the card
combinations (e.g., a pair or three-of-a-kind may be formed from the player’s private
cards and the community cards). After the last betting round, the card combinations
for active players are compared during the so-called showdown.

Classifying poker strategies

There is a vast body of literature on winning poker strategies, mostly written by domain
experts [Brunson, 1979; Harrington, 2004; Sklansky, 1987]. These poker strategies may
describe how to best react in detailed situations in a poker game, but also how to
behave over large numbers of games. Typically, experts describe poker strategies (i.e.,
behavior over a series of games) based on only a few aggregate features. For example, an
important feature in describing a player’s strategy is the percentage of times this player
voluntarily invests money during the pre-flop phase and then sees the flop (henceforth
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abbreviated as VPIP), since this may give insight into the player’s hand. If a particular
player sees the flop more than, let’s say, 40% of the games, he or she is likely playing
with low quality hands [Sklansky, 1987] compared to players that only see the flop
rarely. The standard terminology used for respectively the first approach is a loose and
for the latter a tight strategy.

Another important feature is the so-called aggression-factor of a player (henceforth
abbreviated asAGR). The aggression-factormeasures whether a player plays offensively
(i.e., bets and raises often), or defensively (i.e., calls often). This aggression factor is
calculated as a ratio between the fractions of a player’s decision to bet, raise or call:

%bet+%raise

%calls

A player with a low aggression-factor is called passive, while a player with a high
aggression-factor is simply called aggressive.

6.2.3 Methodology

This section outlines the methodology of the analysis, and refers to other sections for
the formal description of replicator dynamics and the heuristic payoff table. I recap
how the replicator dynamics are combined with the heuristic payoff table that is used
to derive average payoffs for the various poker strategies.

The replicator dynamics [Taylor and Jonker, 1978; Zeeman, 1981] are a system of
differential equations describing how strategies evolve through time. It assumes an
infinitely large population of “individuals” (i.e., players). Each player may apply one
of the available “replicators” (i.e., strategies ). The pure strategy i is played with
probability xi, according to the vector x = (x1, . . . , xk). The profit of each player
depends on the population composition x. The payoff to each heuristic poker strategy
in a composition of a finite population is captured in a heuristic payoff table and used
to estimate the payoff in the infinite population model as described in Section 2.4.3.
At each time step, players may switch their strategies based on the profits received
(i.e., they switch to more successful strategies). As a consequence, the probabilities of
strategies are changed. This adaptation is modeled by the replicator dynamics from
evolutionary game theory.

An abstraction of an evolutionary process usually combines two basic elements:
selection and mutation. Selection favors some population strategies over others, while
mutation provides variety in the population. In this research, two replicator dynamics
models are considered. The first one is based solely on selection of the most fit strategies
in a population. The second model, which is based on Q-learning [Tuyls et al., 2006,
2003], includes mutation in addition to selection terms. The RD are given in Sec-
tion 2.4.2, and the RD with mutation are described by the idealized model of Q-
learning, introduced in Section 2.5.3. For all described selection-mutation experiments,
the mutation parameter τ is fixed at 0.1.
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6.2.4 Experiments and results

The evolutionary analysis is based on a collection of 318535 No-Limit Texas Hold’em
games played by a total of 20441 human players at an online poker site. The data
features tables with varying numbers of players participating in a single game, ranging
from two-player games to full-table games with 9 players. As a first step, the strategy
for each player in any given game needs to be classified. If a player played fewer than 100
games in total, the data is considered insufficient to establish a strategy classification,
and the player and respective games are ignored. If the player played at least 100 games,
intervals of 100 games are used to collect statistics for this specific player; these statistics
then determine the VPIP and AGR values (see Section 6.2.2). The player’s strategy is
then labelled according to these two values, and the resulting strategy classification is
associated with the specific player for all games in the interval. Having estimated all
players’ strategies, it is now possible to determine the discrete profile (i.e., the number
of players playing any of the available strategies) for all games. This discrete profile
assigns each game to a row in the heuristic payoff table. Finally, the average payoffs
for all strategies given a particular discrete profile can be computed.

Next, I highlight several experiments with varying strategy classifications. Of course,
more complex strategy classifications are possible, but the ones chosen are often used
by domain experts and serve as a good starting point to keep the analysis of their
interplay tractable.

Analyzing pre-flop and post-flop play

The first two experiments examine pre-flop and post-flop play in isolation. To be more
specific, each player’s strategy is labeled solely based on either their VPIP or AGR
values. Table 6.1 gives the rules for the strategy classification. These rules were derived
from domain knowledge and are common for classifying strategies in a No-Limit Texas
Hold’em game [Brunson, 1979; Harrington, 2004; Sklansky, 1987].

The VPIP determines the pre-flop strategy, and gives insight in the player’s card
selection. A loose player plays a wider range of cards whereas a tight player will wait
for more quality cards (i.e., those that have a higher probability of winning the game at
showdown when cards are compared). The AGR value determines the post-flop strategy,
and denotes the ratio between aggressive (i.e., betting and raising) and passive (i.e.,
calling) actions.

It is often claimed by domain experts that aggressive strategies dominate their
passive counterparts. The rules of the poker game, and in particular the fact that

Table 6.1: Strategy classification for pre-flop and post-flop play in poker.

pre-flop Rule post-flop Rule
Tight VPIP < 0.25 Passive AGR < 1

Semi-Loose 0.25 6 VPIP < 0.35 Neutral 1 6 AGR < 2
Loose VPIP > 0.35 Aggressive AGR > 2
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games can be won by aggressive actions even when holding inferior cards, seem to
back up this claim. Figure 6.7 examines the strategic advantage of strategies with
varying VPIP values. Figure 6.7a (selection) yields one strong attractor that lies at the
pure strategy aggressive. Figure 6.7b (selection-mutation) shows a mixed equilibrium
strategy mainly between aggressive and neutral. Again, the aggressive strategy
is played 3 out of 4 games. These results confirm the claim that aggressive strategies
generally dominate passive ones.

For the pre-flop strategy, the tight strategy is often assumed to be best, in particular
for less skillful players. However, it is also claimed that the pre-flop strategy should
depend on the strategies played by the opponents. If the majority of players play a
tight strategy, then a looser strategy pays off and vice versa.

Figure 6.8a (selection) features an attractor lying in the pure strategy tight. Sim-
ilarly, he selection-mutation model in 6.8b yields a mixed strategy between tight and
semi-loose. Still, the tight strategy is dominant and is played 8 out of 10 games.
These findings seem to contradict the claim that one should mix their pre-flop play
according to the opponent strategies. However, this perspective does not explicitly dif-
ferentiate based on the post-flop strategies. The previous experiment has already shown
that aggression is a key strategic choice for the utility of the overall strategy. A more
differentiated evaluation of Figure 6.8 suggests that the tight strategy is optimal in
expectation, i.e., given a random post-flop strategy from the observed distribution.
Mixed strategies in pre-flop play may become rational when players use very specific
post-flop strategies, e.g., always playing aggressive after the flop.

Analyzing Complete Poker Strategies

The next series of experiments combines both VPIP and AGR features for strategy
classification. The rules used are shown in Table 6.2. Again note that these strategy
classifications are derived from the poker literature, although here the number of at-

[a] [b]

Pass

Neutral

Aggr Pass

Neutral

Aggr

Figure 6.7: Dynamics of post-flop strategies using the replicator dynamics based on selection
(a) and selection combined with mutation (b)
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[a] [b]

Tight

SemiïLoose

Loose Tight

SemiïLoose

Loose

Figure 6.8: Dynamics of pre-flop strategies using the replicator dynamics based on selection
(a) and selection combined with mutation (b)

tributes per feature is reduced to two, resulting in exactly four strategies: tight-passive
(a.k.a. Rock), tight-aggressive (a.k.a. Shark), loose-passive (a.k.a. Fish) and loose-
aggressive (a.k.a. Gambler).

Experts argue that the Shark strategy is the most profitable strategy, since it
combines patience (waiting for quality cards) with aggression after the flop, while the
Fish strategy is considered the worst possible strategy.

Recall from Section 2.4.2 that each simplex shows the competitive strategic advant-
age of three strategies. For this experiment, a total of four strategies is available to
the players. Hence, one strategy is excluded per plot by only considering discrete pro-
files from the heuristic payoff table where no players chose the excluded strategy. This
results in four different combinations of three strategies. Here, trajectories are used to
illustrate the dynamics for both the selection and selection-mutation model.

Figure 6.9a, Figure 6.10a and Figure 6.12a confirm that both passive strategies, i.e.,
the Fish and Rock strategies, are dominated by the two aggressive strategies Shark
and Gambler. Furthermore, the attractors in Figure 6.9a and Figure 6.10a lie close to
the Shark strategy; this strategy is played with 80% and 65% probability respectively.
In Figure 6.12a, the Gambler strategy is slightly preferred over the Shark strategy,
which is played 40% of the time. These results imply that Shark is a strong strategy,
as was suggested by domain experts. Only in Figure 6.12 is Shark slightly dominated
by Gambler. Similarly, the Fish strategy is a repeller, with the exception of Figure
6.11, where the equilibrium is mixing Fish with the Rock strategy.

Table 6.2: List of meta-strategies and rules for strategy classification in poker.

Strategy Rule
Rock VPIP < 0.25, Passive AGR < 2
Shark VPIP < 0.25, Passive AGR >= 2
Fish VPIP >= 0.25, Passive AGR < 2

Gambler VPIP >= 0.25, Passive AGR >= 2
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[a] [b]

Rock

Shark

Fish Rock

Shark

Fish

Figure 6.9: Trajectory plots analyzing the Rock, Shark and Fish strategies using the RD
based on selection (a) and selection-mutation (b)

The selection-mutation plots show similar results with mixed strategies close to the
Shark. In general, the equilibria found through selection-mutation lie closer to the
center of the simplex and therefore mix more between the available strategies. This be-
havior is inherent to the selection-mutation model, which includes players’ exploration
of all available actions. An interesting observation in Figure 6.9 is that for the mixed
strategy using the selection model the Fish strategy is played more compared to the
Rock strategy (respectively 17% to 3%), while the selection-mutation model suggests
the opposite. Here, the Rock strategy is played more with 17% to 10%. Domain ex-
perts believe the Fish strategy is inferior over all other strategies. Thus, results from
the selection-mutation model align better with expert advice.

[a] [b]

Rock

Shark

Gamb Rock

Shark

Gamb

Figure 6.10: Trajectory plots analyzing the Rock, Shark and Gambler strategies using the
RD based on selection (a) and selection-mutation (b)
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Figure 6.11: Trajectory plots analyzing the Rock, Fish and Gambler strategies using the RD
based on selection (a) and selection-mutation (b)

[a] [b]
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Figure 6.12: Trajectory plots analyzing the Shark, Fish and Gambler strategies using the
RD based on selection (a) and selection-mutation (b)

Figure 6.13: Trajectory plots in 3-dimensional space analyzing dynamics for all 4 strategies
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A shortcoming of the leave-one-out approach is that it only captures the boundary
conditions of the true strategy space mixing between four strategies. Therefore, the fol-
lowing experiment analyzes the dynamics among all four strategies at once. The result
for the selection model is represented in Figure 6.13 as a 2-dimensional representation
of the 3-dimensional space. Several random interior points were chosen to visualize the
basins of attraction by their trajectories. The dynamics are similar to the previous
plots, but there are differences. For example, only two attractors remain both near the
Shark strategy, an the attractor found in Figure 6.12a is not attracting interior points.
The attractors near the Shark strategy clearly have a stronger basin of attraction, i.e.
trajectories are more likely to end up in one of these equilibria.

For the experiments with selection-mutation dynamics, the results are summarized
numerically. It yields only one attractor near the mixed strategy 56%, 25%, 17% and 2%,
for respectively the Shark, Rock, Gambler and Fish strategy. The Fish strategy
effectively goes extinct under this model.

6.2.5 Discussion

This case study has investigated the evolutionary dynamics of strategic behavior in
the game of No-Limit Texas Hold’em poker. The evolutionary game theoretic per-
spective reveals how rational players switch between different strategies under different
competition, in particular using two Replicator Dynamic models, one that is purely
driven by selection, and another that also contains mutation. The analysis is based
on observed poker games played at an online poker site, and identifies several heuristic
poker strategies based on domain knowledge. The payoff to each strategy under various
opponent strategies is captured in the heuristic payoff table, and further used in the
context of the replicator dynamics. The results have been visualized in simplex plots
that show where the equilibria lie, what the basins of attraction of the equilibria look
like, and what the stability properties of the attractors are. The results mainly confirm
expert advice, namely that aggressive strategies mostly dominate their passive coun-
terparts. Overall, the selection-mutation model reflected what domain experts claim
even more closely than the basic model of selection.

Future work shall examine the interactions between the strategies among several
other dimensions. For example, one could look at more detailed strategy classifications
(i.e., based on more features) or represent strategies in a continuous way.

6.3 Summary

This chapter has demonstrated the evolutionary game theoretic approach on two ap-
plications. First, the value of insider information in double auctions has been studied.
The results have shown that a little information may be significantly worse than having
no information at all, but overall insiders dominate the market if information is free.
This result of the evolutionary analysis confirms previous findings that the value of in-
formation follows a J-curve. Additional experiments have revealed that if information
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comes at a cost, less informed traders may prevail. The more complex population model
in combination with costs of information extends the state-of-the-art methodology to
analyze the value of information in double auctions. In future work, this method can
be extended further to study auctions with exogenous events to capture more realistic
scenarios, such as trader in- and outflow.

Second, the analysis has been applied in the domain of poker. The rigorous analysis
has confirmed conventional poker wisdom, namely that aggressive strategies dominate
their passive counterpart in most settings. In addition, the explorative models including
mutation match even better with human expert advice, suggesting that they are a better
model for human behavior in poker.

113





7
Conclusions

The previous chapters have discussed each of the contributions in detail. This chapter
concludes the dissertation with a discussion of the contributions and how these answer
the research questions that were set forward in the introduction. In addition, some
limitations of the presented approach are discussed and promising avenues for future
research are pointed out.

7.1 Answers to the research questions

Seven research questions were put forward in Section 1.4 and will each be answered
explicitly based on the findings presented in the corresponding chapters.

1. Why does Q-learning deviate from the idealized model, and how can Q-learning
be adjusted to show the preferable behavior of the idealized model? Chapter 3

Section 3.1 has described why Q-learning deviates from the idealized model. The
Q-learning algorithm updates one estimated action-value at a time, namely the
one corresponding to the last selected action. As a result, the expected update of
an action-value also depends on the frequency of the updates, and not only on
the expected change given an update has occurred. Since only the estimate of the
selected action i is updated, the frequency is determined by the probability xi of
the agent playing that action. The idealized model on the other hand has been
derived under the simplifying assumption of updating all action-values at each
time step. Thus, the expected behavior of Q-learning is equivalent to xi times the
dynamics of the idealized model. In experiments, this discrepancy results in policy
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updates that depend on the initialization of Q-values as pessimistic, neutral or
optimistic, while the idealized model has no such dependencies.

Using these insights, the variation Frequency Adjusted Q-learning (FAQ-learning)
has been introduced in Section 3.2 and its expected behavior closely adheres to
the idealized model. This algorithm scales each update inversely proportionally
to the update frequency of the corresponding action, thereby approximating the
effect of an equal number of updates for all actions. Experiments have shown that
FAQ-learning is consistent across Q-value initializations and indeed inherits the
behavior of the idealized model.

2. What is the long term behavior of this idealized Q-learning model; does Q-learning
converge to Nash equilibria? Chapter 3

The idealized model that describes the dynamics of Frequency Adjusted Q-
learning has been proven to converge to stable points in two-agent two-action
games in Section 3.3. These stable points can be moved arbitrarily close to Nash
equilibria by selecting an appropriately small exploration parameter. For high
exploration, the stable point can be moved arbitrarily close to the uniform policy
(1
2
, 1
2
), and approaches the Nash equilibrium as exploration is decreased if there

is only one. In case of Battle-of-Sexes type games, i.e., those featuring three Nash
equilibria, the single stable point near the uniform policy shows a pitchfork bi-
furcation at a critical exploration rate and two attracting fixed points as well as
one repelling fixed point appear for low exploration. The fixed points approaching
pure equilibria are attracting, and the fixed point approaching the mixed equilib-
rium is repelling. This proof of convergence provides the first conclusive evidence
of a variation of individual Q-learning to converge in multi-agent games. The
auxiliary proof developed by other authors supports my findings, but does lack
the grounding in the theory of FAQ-learning provided in Section 3.2 and 3.3.

3. How can the evolutionary framework be extended to more realistic scenarios such
as varying exploration rates or multiple states? Chapter 4

First, the learning dynamics of Frequency Adjusted Q-learning (FAQ-learning)
have been extended to exploration rates that may vary with time. This exten-
ded dynamic model simplifies to the previously derived idealized dynamics if the
exploration function is constant over time, i.e., its derivative is zero. This result
also implies that given infinite time, the exploration may be decreased arbitrar-
ily slowly, such that the derivative can be moved arbitrarily close to zero. As a
consequence, the derived model is more relevant for modeling practical solutions
of finite time than to provide convergence proofs, in which infinite time may be
assumed. Second, the derivations of the evolutionary model have been extended
to multi-state settings. These extended models show that the dynamics of both
FAQ- and Q-learning depend on the Q-values in multi-state environments and
cannot be reduced to a representation in the policy space. In other words, the
interactive learning system is inherently high dimensional, which poses challenges
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for inspecting or analyzing such a complex system. Third, the dynamics of Le-
nient FAQ-learning have been examined and have shown that leniency makes it
possible to increase the basin of attraction of the global optimum at the cost of
speed of convergence.

4. Are there alternative perspectives on the time varying dynamics of multi-agent
learning that enable a systematic design of time-dependent parameters?Chapter 5

An orthogonal visualization of the learning trajectories has been proposed; it fa-
cilitates a systematic design of time-dependent parameters of both games and
agents. This new perspective elicits the information of the learning system en-
coded in the density of joint policy particles, rather than only the development of
one learning trajectory. Using a case study, this density-based method has been
demonstrated by successfully setting a time-dependent parameter in an example
application.

5. What are the commonalities and differences between variations of infinitesimal
gradient ascent and the replicator dynamics? Chapter 5

The dynamics of several variants of infinitesimal gradient ascent have been com-
pared to the replicator dynamics in normal form games, and they share the gradi-
ent of the reward as a common building block in their dynamics. Infinitesimal
gradient ascent assumes that information about the update of all actions is avail-
able at each time step, while the replicator dynamics relate to reinforcement-
learning algorithms that only sample one action value at a time, and thus in
expectation update proportionally to the frequency of selecting an action. Hence,
reinforcement learning can also be considered stochastic gradient ascent on the
payoff function, where updates are only applied to the sampled action.

6. How can the evolutionary analysis be applied in realistic domains, and more
specifically what does it reveal about auctions and poker? Chapter 6

The evolutionary analysis can be applied to practical domains by collecting pay-
offs in a heuristic payoff table, and computing the expected payoff for the evolu-
tionary model therefrom. In this way, payoffs have been aggregated from simula-
tions of auctions and from real world poker games. First, the value of information
in auctions has been studied for a number of realistic information distributions
between the traders. Results confirm previous findings, stating that the value of
information is not monotonically increasing as information cumulates but rather
follows a J-shape, i.e., having some information may be worse than having none,
while only insiders outperform the market. Due to this advantage of insiders,
these would drive lower-information traders extinct if information comes for free.
If information is costly, lower-information traders may prevail. It should be noted
that exogenous events have not been accounted for and may be another reason
for the prevalence of lower-information traders.
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The analysis of poker strategies has mostly confirmed conventional expert advice,
namely that aggressive strategies commonly dominate their passive counterparts.
In addition, the evolutionary models including exploration have been found to
be a better match to expert advice than those without exploration. This finding
suggests that experts include aspects of exploration in their model of human
behavior.

Overall, these six research questions have touched upon several key aspects of multi-
agent learning: (1) the critical evaluation of state-of-the-art models and the firm estab-
lishment of the link between reinforcement-learning algorithms and dynamical systems,
(2) the use of this link to prove convergence behavior, (3) the extension of the evolution-
ary framework to cover more complex learning algorithms and games, (4-5) improving
the coherence of the evolutionary framework, and (6) leveraging insights from theory
in applications.

7.2 Contributions to multi-agent learning agendas

The objective of single-agent learning is well-defined as optimal performance in the
limit, fast speed of convergence and minimal or no regret [Kaelbling et al., 1996]. Multi-
agent learning on the other hand is a younger field with more diverse ambitions, e.g.,
Shoham et al. have defined five agendas [Shoham et al., 2007]: (1) computing prop-
erties of a game, (2) describing natural agents, e.g., human learning, (3) determining
whether algorithms are in equilibrium with each other (normative agenda), (4) pre-
scribing distributed control that has desirable aggregate behavior, and (5) prescribing
individually rational behavior. Empirical comparisons in benchmark problems provide
a first guideline on the comparative performance of each algorithm [Busoniu et al.,
2008; Panait and Luke, 2005]. However, these black box comparisons do not facilitate
deep understanding of the strengths and weaknesses of learning algorithms, neither do
they provide guarantees. This lack of a formal foundation makes it hard to generalize
beyond the tested environments. In contrast, the link between dynamical systems and
learning makes it possible to apply tools from dynamical systems to the analysis of
multi-agent reinforcement learning, and allows a more rigorous study of interactions
and parameter sensitivity. Chapter 3 contributes to the normative agenda by showing
how the link to dynamical systems can be used to provide convergence guarantees by
analyzing learning dynamics in the policy space. The analysis has been extended to
more realistic scenarios in Chapter 4, throughout which results have been discussed
in light of both prescriptive agendas (optimality with respect to both the system as
well as the individual). Chapter 5 has provided a broader view at these dynamical sys-
tems, which are a capable tool for the pursuit of diverse goals—be they computational,
normative, or prescriptive.
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7.3 Limitations of the methodology and future work

Evolutionary dynamics have been used as a framework for multi-agent learning through-
out the dissertation and yield many new insights, especially into the interactive in-
fluences of multi-agent learning. However, this approach as any other is tailored to a
specific purpose with its own limitations in what it can deliver. More specifically, multi-
agent reinforcement learning is a stochastic system that is subject to time constraints
in any practical application. Taking the infinitesimal limit of the learning rate, it is
linked to a deterministic dynamical system defined by partial differential equations.
Since any single update is now infinitesimally small, any positive change relates to an
infinite number of updates that take infinite time and these dynamical systems can
thus only be seen as an abstract model of reality. Moving towards dynamical systems
enables using tools like the eigenvalues of the Jacobian to determine the stability and
convergence properties of the system and hence facilitates formal analysis. At the same
time, it captures only the expectation of the stochastic system, and this approximation
may create artifacts by itself, e.g., if the stochastic system is equally likely to go either
way the expectation may suggest stability for specific boundary conditions. These lim-
itations are inherent to the way in which the dynamical system is derived from the
stochastic algorithms but need to be tolerated as limitations of this otherwise powerful
approach.

Some notes on the limitations of the research method and presented experiments
are pointed out below. There are many promising extensions that have not made it
into this dissertation but could be explored in future work.

Chapter 3 The derivation of Frequency Adjusted Q-learning (FAQ-learning) closes a
gap that becomes apparent when comparing the idealized model to Q-learning.
The chapter concludes with a proof of convergence for FAQ-learning, which has
subtle but essential differences from Q-learning by scaling each update anti-
proportionally to the frequency of the action. If each update was scaled by the
same factor, dynamical systems theory states that the qualitative behavior must
be equivalent [Hofbauer and Sigmund, 2002], and the proof would transfer dir-
ectly to Q-learning. However, since the factor depends on each action and player,
this proof is only indicative rather than conclusive about the Q-learning conver-
gence. A formal argument for the transfer to hold is still missing.

Chapter 4 The time-varying multi-state dynamics extend the dynamical system
framework to more realistic settings. However, the interactive learning dynamics
are inherently so complex that they become intractable to handle with current
methods. More generally, proving convergence of high dimensional practical sys-
tem (multi-state, many action, many agents) is challenging if not impossible.
Here, empirical evaluation still yields more conclusive insights. In addition, the
presented case study and design of a specific exploration function could be im-
proved in several ways, e.g., the requirements of multi-agent learning could be
linked to the formal requirements for exploration in single-agent learning. The
model of leniency pushes the frontier of algorithms that are covered by the evolu-
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tionary framework. Additional experiments are required to validate whether the
improved convergence to global optima justifies the increased time it takes to
reach these optima.

Chapter 5 The new perspectives complement existing literature on how to capture
these high dimensional learning dynamics. However, the orthogonal approach still
needs to be grounded in established work, e.g., relating the initial distribution to a
prior as it is used in Bayesian reasoning. In addition, both new perspectives would
benefit from being demonstrated in applications. Overall, the theory of two-agent
two-action games is quite ahead of the application of one-population models, and
more advanced concepts, e.g., the new perspectives, need to be transferred and
applied to practical problems.

Chapter 6 The underlying methodology of the applications chapter computes the
evolutionary model based on heuristic payoff tables, assuming that individuals of
an infinite population meet each other for competition in a finite small group. This
model matches very well with the poker domain, in which a table is played and
money is won or lost in competition to a small number of opponents. For other
applications like auctions this model may be more of an approximation, since
real systems may yield far more agents than evaluated in the heuristic payoff
table. To study the effect of scaling the system to many agents, this methodology
would greatly benefit from a systematic approximation of payoffs in truly large
finite populations. This direction could provide the basis for determining how
many agents are required to achieve a certain global system behavior, and how
many are probably sufficiently many agents to yield a good approximation of real
systems.

Despite the limitations that are bound to arise with any choices in the methodology,
the sum of the parts forms a coherent extension of the framework for state-of-the-art
multi-agent learning research. I hope to have given the reader a comprehensive overview
of the research that has been performed, and leave it to the interested mind to ponder
further promising research based on the potential but also limitations that have been
pointed out throughout this dissertation.
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Why Second-Price Sealed-Bid Auctions Lead to More Realistic Price-Demand Func-
tions. International Journal of Electronic Commerce, 14(4):7–38, July 2010. 93

Richard Bellman. A Markovian decision process. Journal of Mathematics and Mech-
anics, 6(5):679–684, 1957. 15

121



BIBLIOGRAPHY

Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Ter-
ence Schauenberg, and Duane Szafron. Approximating Game-Theoretic Optimal
Strategies for Full-scale Poker. In Proc. of 18th Int. Joint Conf. on Artificial Intel-
ligence (IJCAI), pages 661–668, 2003. 104

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. A comparative study of multi-
agent reinforcement learning dynamics. In Proc. of 22nd Belgium-Netherlands Conf.
on Artificial Intelligence (BNAIC 2010), pages 11–18. University of Luxembourg,
2010a. 69, 70

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Lenient frequency adjusted
Q-learning. In Proc. of 22nd Belgium-Netherlands Conf. on Artificial Intelligence
(BNAIC 2010), pages 19–26. University of Luxembourg, 2010b. 69, 70

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Empirical and Theoretical Sup-
port for Lenient Learning (Extended Abstract). In Tumer, Yolum, Sonenberg, and
Stone, editors, Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), pages 1105–1106. International Foundation for AAMAS, 2011.
6, 55

Avrim Blum and Yishay Mansour. Learning, Regret minimization, and Equilibria.
In Nisan, Roughgarden, Tardos, and Vazirani, editors, Algorithmic Game Theory,
chapter 4, pages 79–100. Cambridge University Press, 2007. 4, 17, 32

Tilman Börgers and Rajiv Sarin. Learning Through Reinforcement and Replicator
Dynamics. Journal of Economic Theory, 77(1):1–14, 1997. 5, 25, 30, 31, 34, 39, 46,
83, 85, 89

Graham Bowley. Lone $4.1 Billion Sale Led to Flash Crash in May. The New York
Times, October 2, 2010. 3

Michael Bowling. Convergence and No-Regret in Multiagent Learning. In Advances in
Neural Information Processing Systems (NIPS) 17, pages 209–216, 2005. 31

Michael Bowling and Manuela Veloso. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136:215–250, 2002. 5, 21, 31, 34, 38, 85

Ronen I. Brafman and Moshe Tennenholtz. R-max - A General Polynomial Time
Algorithm for Near-Optimal Reinforcement Learning. Journal of Machine Learning
Research, 3:213–231, 2002. 69

Doyle Brunson. Doyle Brunson’s Super System: A Course in Power Poker. Cardoza,
1979. 103, 105, 107

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey
of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics - Part C: Applications and Reviews, 18(2):156–172, 2008. 3, 4, 16, 20,
37, 83, 118

122



BIBLIOGRAPHY

Doran Chakraborty and Peter Stone. Convergence, Targeted Optimality, and Safety in
Multiagent Learning. In Johannes Fürnkranz and Thorsten Joachims, editors, Proc.
of the 27th Int. Conf. on Machine Learning (ICML), pages 191–198. Omnipress,
2010. 21

Howie Choset. Coverage for robotics - A survey of recent results. Annals of Mathematics
and Artificial Intelligence, 31:113–126, 2001. 2

Dave Cliff. Minimal-Intelligence Agents for Bargaining Behaviors in Market-Based En-
vironments. Technical Report September 1996, Technical Report HP/97/91, Hewlett
Packard Laboratories, Bristol, England, 1997. 62

Dave Cliff and Janet Bruten. Zero Not Enough: On The Lower Limit of Agent Intelli-
gence For Continuous Double Auction Markets. Technical report, Technical Report
HP/97/141, Hewlett Packard Laboratories, Bristol, England, March 1997. 62

Dave Cliff and Janet Bruten. Less than human: Simple adaptive trading agents for
CDA markets. Technical report, Technical Report HP/97/155, Hewlett Packard
Laboratories. To be presented at CEFEES98, Cambridge UK, Bristol, England, 1998.
62

Alfred Cowles. Can stock market forecasters forecast? Econometrica: Journal of the
Econometric Society, pages 309–324, 1933. 92

Jacob W. Crandall. Just Add Pepper: Extending Learning Algorithms for Repeated
Matrix Games to Repeated Markov Games. In Proc. of 11th Int. Conf. on Autonom-
ous Agents and Multiagent Systems (AAMAS 2012), pages 399–406. International
Foundation for Autonomous Agents and Multiagent Systems, 2012. 69

Jacob W. Crandall, Asad Ahmed, and Michael A. Goodrich. Learning in Repeated
Games with Minimal Information: The Effects of Learning Bias. In Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI-11), pages 650–656, 2011. 4, 16,
20, 21, 37, 40, 82

John G. Cross. A Stochastic Learning Model of Economic Behavior. The Quarterly
Journal of Economics, 87(2):239–266, 1973. 3, 5, 16

Aaron Davidson, Darse Billings, Jonathan Schaeffer, and Duane Szafron. Improved
opponent modeling in poker. In Proc. of the Int. Conf. on Artificial Intelligence
(ICAI), pages 1467–1473, 2000. 103
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Minimization. In Balcázar, Bonchi, Gionis, and Sebag, editors, Machine Learning
and Knowledge Discovery in Databases, volume 6322 of Lecture Notes in Computer
Science, pages 82–96. Springer Berlin / Heidelberg, 2010. 5, 18, 32, 84, 85

Tom Lauriciella, Kara Scannell, and Jenny Strasburg. How a Trading Algorithm Went
Awry. The Wall Street Journal, October 1, 2010. 3

Michael L. Littman. Friend-or-foe Q-learning in general-sum games. In Proc. of the
18th Int. Conf. on Machine Learning (ICML), pages 322–328, 2001. 21

Michael Lederman Littman. Markov games as a framework for multi-agent reinforce-
ment learning. In Proc. of 11th Int. Conf. on Machine Learning (ICML), pages
157–163, 1994. 15, 21

Burton G. Malkiel. The Efficient Market Hypothesis and Its Critics. Journal of Eco-
nomic Perspectives, 17(1):59–82, 2003. 92

John Maynard Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982. 104

126



BIBLIOGRAPHY

John McMillan. Selling Spectrum Rights. Journal of Economic Perspectives, 8(3):
145–162, 1994. 93

Kumpati Subrahmanya Narendra and Mandayam A. L. Thathachar. Learning Auto-
mata - A Survey. IEEE Transactions on Systems, Man, and Cybernetics, 4(4):323–
334, 1974. 17

Abraham Neyman. From Markov Chains to Stochastic Games. In Abraham Ney-
man and Sylvain Sorin, editors, Stochastic Games and Applications, pages 397–415.
Kluwer Academic Publishers, 2003. 15

James Nicolaisen, Valentin Petrov, and Leigh Tesfatsion. Market Power and Efficiency
in a Computational Electricity Market With Discriminatory Double-Auction Pricing.
IEEE Transactions on Evolutionary Computation, 5(5):504–523, 2001. 62

Jinzhong Niu, Kai Cai, Simon Parsons, Maria Fasli, and Xin Yao. A grey-box approach
to automated mechanism design. Electronic Commerce Research and Applications,
11(1):24–35, January 2012. 93

Shervin Nouyan, Roderich Groß, Michael Bonani, Francesco Mondada, and Marco
Dorigo. Teamwork in Self-Organized Robot Colonies. IEEE Transactions on Evolu-
tionary Computation, 13(4):695–711, 2009. 1

Liviu Panait and Sean Luke. Cooperative Multi-Agent Learning: The State of the Art.
Autonomous Agents and Multi-Agent Systems, 11(3):387–434, November 2005. 2, 4,
20, 118

Liviu Panait, Karl Tuyls, and Sean Luke. Theoretical Advantages of Lenient Learners:
An Evolutionary Game Theoretic Perspective. Journal of Machine Learning Re-
search, 9:423–457, 2008. 69, 70, 73

Simon Parsons, Marek Marcinkiewicz, and Jinzhong Niu. Everything you wanted to
know about double auctions, but were afraid to (bid or) ask. Technical report,
Brooklyn College, City University of New York, 2005. 62

Simon Parsons, Juan A. Rodriguez-Aguilar, and Mark Klein. Auctions and Bidding: A
Guide for Computer Scientists. ACM Computing Surveys (CSUR), 43(2):10, 2011.
93

Steve Phelps, Marek Marcinkiewicz, and Simon Parsons. A novel method for automatic
strategy acquisition in N-player non-zero-sum games. In Proc. of the fifth Int. joint
Conf. on Autonomous Agents and Multiagent Systems (AAMAS ’06), pages 705–712,
New York, New York, USA, 2006. ACM Press. 1, 61, 93

Steve Phelps, Peter McBurney, and Simon Parsons. A Novel Method for Strategy Ac-
quisition and its Application to a Double-Auction Market Game. IEEE Transactions
on Systems, Man, and Cybernetics - Part B: Cybernetics, 40(3):668–674, 2010a. 61,
93

127



BIBLIOGRAPHY

Steve Phelps, Peter McBurney, and Simon Parsons. Evolutionary mechanism design:
a review. Journal of Autonomous Agents and Multi-Agent Systems, 21(2):237–264,
October 2010b. 61, 93

Steve Phelps, Simon Parsons, and Peter McBurney. Automated trading agents verses
virtual humans: An evolutionary game-theoretic comparison of two double-auction
market designs. In Proc. of the 6th Workshop on Agent-Mediated Electronic Com-
merce, New York, USA, 2004. 61, 62, 104

Steve Phelps, Simon Parsons, and Peter Mcburney. An evolutionary game-theoretic
comparison of two double-auction market designs. In Agent-Mediated Electronic
Commerce VI. Theories for and Engineering of Distributed Mechanisms and Systems,
pages 101–114, 2005. 94

Marc Ponsen, Jan Ramon, Tom Croonenborghs, Kurt Driessens, and Karl Tuyls. Bayes-
Relational Learning of Opponent Models from Incomplete Information in No-Limit
Poker Learning an Opponent Model. In Proc. of 23rd Conf. of the Association for the
Advancement of Artificial Intelligence (AAAI-08), pages 1485–1487, Chicago, USA,
2008. 103

Marc Ponsen, Karl Tuyls, Michael Kaisers, and Jan Ramon. An evolutionary game-
theoretic analysis of poker strategies. Entertainment Computing, 1(1):39–45, January
2009. 91

Rob Powers and Yoav Shoham. New Criteria and a New Algorithm for Learning in
Multi-Agent Systems. In Advances in Neural Information Processing Systems (NIPS)
17, pages 1089–1096, 2004. 21

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, 1994. 14

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535, 1952. 12

John Rust, Richard Palmer, and John H. Miller. Behavior of Trading Automata in a
Computerized Double Auction Market. In The Double Auction Market: Institutions,
Theories, and Evidence. Santa Fe Institute, Addison-Wesley, 1993. 62

William H. Sandholm. Population Games and Evolutionary Dynamics. MIT Press,
2010. 88

Thomas D. Schneider. Evolution of biological information. Nucleic Acids Research, 28
(14):2794–9, July 2000. 33

Lloyd Stowell Shapley. Stochastic games. Proc. of the National Academy of Sciences,
39:1095–1100, 1953. 16

Yoav Shoham and Kevin Leyton-brown. Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, 2009. 16

128



BIBLIOGRAPHY

Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is the answer,
what is the question? Artificial Intelligence, 171(7):365–377, May 2007. 2, 3, 4, 20,
37, 118

Satinder Singh, Michael Kearns, and Yishay Mansour. Nash Convergence of Gradient
Dynamics in General-Sum Games 3 Gradient Ascent for Iterated Games. In Proc. of
16th Conference on Uncertainty in Artificial Intelligence (UAI 2000), pages 541–548,
Stanford, 2000. Morgan. 5, 31, 34, 85

David Sklansky. The Theory of Poker By. Two Plus Two Publisher, 1987. 103, 105,
106, 107

John Maynard Smith. Evolution and the Theory of Games. Cambridge University
Press, 1982. 24

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch,
Darse Billings, and Chris Rayner. Bayes Bluff: Opponent Modelling in Poker. In
Proc. of the 21st Conf. in Uncertainty in Artificial Intelligence (UAI), pages 550–558,
2005. 103

Dietrich Stauffer. Life, Love and Death: Models of Biological Reproduction and Aging.
Technical report, Institute for Theoretical Physics, 1999. 33

Peter Stone. Multiagent learning is not the answer. It is the question. Artificial Intel-
ligence, 171(7):402–405, May 2007. 3, 4

Peter Stone and Manuela Veloso. Multiagent Systems: A Survey from a Machine
Learning Perspective. Autonomous Robotics, 8(3):345–383, 2000. 2

Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman.
PAC model-free reinforcement learning. Proceedings of the 23rd Int. Conf. on Ma-
chine learning (ICML), pages 881–888, 2006. 13

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge MA, 1998. 2, 5, 11, 12, 15, 18, 19, 33, 34, 37, 104

Peter D. Taylor and Leo B. Jonker. Evolutionary Stable Strategies and Game Dynam-
ics. Mathematical Biosciences, 156:145–156, 1978. 24, 104, 106

Mandayam A. L. Thathachar and P. S. Sastry. Varieties of Learning Automata: An
Overview. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cyber-
netics, 32(6):711–722, 2002. 17

Mandayam A. L. Thathachar and P. S. Sastry. Networks of Learning Automata: Tech-
niques for Online Stochastic Optimization. Springer, 2003. 32
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Notation

α learning rate α

β auxiliary FAQ-learning rate β

(A,B) Payoff bi-matrix, with A containing payoffs for the row player, and B containing
payoffs for the column player

Cij payoff matrix C, where Cij indicates the payoff of action i against j for the column
player

δ the small positive constant δ can usually be chosen arbitrarily small, used as a con-
tinuous time increment, or to denote in probability as 1− δ

∂,d differential in a continuous time process

∆ difference in a discrete time process

ei the ith unit vector ei, a vector with all zeros except the ith component which is one

ǫ error ǫ is a small positive value, used to bound the difference between actual and
optimal behavior or performance; in the market model it denotes a small random
variable

γ discount factor γ, used in the discounted sum of future returns

ð gradient of the value or payoff function

h the vector h = (1,−1)

i action i, usually used as an iterator or arbitrary action

j action j denotes a specific action, or used as an auxiliary iterator

J(·, ·) Jacobian J(x,y) of a dynamical system based on the joint policy state (x,y)

k finite number of actions k

λ eigenvalue λ

n finite total number of elements n

ps probability ps of being in state s under the current policy
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NOTATION

π(s) deterministic policy, where π(s) returns the action played in state s

Qi(s, t) Q-value at time t for taking action i in state s

r(t) reward r(t) at time t

Ri(s, s
′) reward function Ri(s, s

′) in a Markov decision process, given after selecting
action i in state s and moving the process into state s ′

Rij payoff matrix R, where Rij indicates the payoff of action i against j for the row
player

s discrete state s of a Markov decision process or stochastic game

t time t; in algorithms discrete, i.e., t ∈ N, in dynamical systems continuous, i.e., t ∈ R

Ti(s, s
′) transition function Ti(s, s

′), denoting the probability to move to state s ′ after
selection action i in state s

τ temperature τ, exploration rate, either considered constant or a function of time

u the uniform policy u = ( 1
n
, . . . , 1

n
), assuming n actions

V(x,y) value function V(x,y)

w regret minimization weights of the polynomial weights algorithm

x policy of the row player x = (x1, . . . , xk), with xi denoting the probability for playing
action i

Xk the (k − 1)-dimensional simplex over k actions

χ(x0, t) the trajectory point that is reached from initial policy x0 by following the
dynamics dx

dt
for t units of continuous time

xe Nash equilibrium policy of the row player

y policy of the column player
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Summary

Computer programs automate increasingly complex tasks. Previously, tasks could be
predefined, e.g., for industrial robotics. In contrast, new application domains like auto-
mated stock trading require highly adaptive agents that learn in dynamic environments
and against adversarial opponents. While automated trading is increasingly adopted
and now generates about a third of all trading volume in the UK, the understanding of
systems in which agents are learning against learning is limited. The lack of a formal
framework makes assessing the stability of these crucial systems practically impossible.
This dissertation addresses the need for a formal framework to analyze multi-agent
learning, drawing on an established relationship between multi-agent reinforcement
learning and evolutionary game theory.

Previous work has shown that the behavior of stochastic multi-agent learning al-
gorithms with an infinitesimal learning rate can be described by deterministic dynam-
ical systems. This approach makes it possible to employ tools from dynamical systems
theory to judge the convergence properties of learning algorithms in strategic interac-
tions. In particular, the dynamics of Q-learning have been related to an extension of
the replicator dynamics from evolutionary game theory with an additional exploration
term. However, this equivalence is based on the simplifying assumption that all actions
are updated at every time step. Here, I show that this leads to a discrepancy between
the observed algorithm performance and the idealized evolutionary model. Since the
idealized model shows preferable behavior, I introduce the variation Frequency Adjus-
ted Q-learning (FAQ-learning) that adheres to the idealized dynamics. In addition,
this solidified link is used to provide a convergence proof for FAQ-learning in two-agent
two-action games. In the limit of infinite time, FAQ-learning converges to stable points
whose distance to Nash equilibria is related to the degree of exploration of the al-
gorithms. Hence, this proof relates multi-agent reinforcement learning to evolutionary
and classical game theory.

In subsequent chapters, I extend the evolutionary framework for multi-agent learn-
ing to more realistic settings, like multiple states and varying exploration rates. Further-
more, I introduce an orthogonal visualization of the dynamical systems that provides a
method to design time-dependent parameters of agents (e.g., exploration) and games.
The evolutionary game theoretic models have the replicator dynamics as a common
building block, and a similar term appears in the dynamical systems describing Infin-
itesimal Gradient Ascent (IGA). The commonalities and differences between variations
of IGA dynamics and replicator dynamics are discussed in detail. In essence, the dif-
ference depends on whether the payoff signal is known for all actions at every time

139



SUMMARY

step or whether it needs to be sampled for one action at a time. This implies that
the reinforcement-learning algorithms can be seen as stochastic gradient ascent on the
payoff function. The comparative discussion of these two independently developed ap-
proaches unites them under the same terminology and provides a basis for further
cross-fertilization.

Finally, the merits of an evolutionary analysis are demonstrated in two application
domains: auctions and poker. The analysis critically evaluates strategic behavior and
compares the results with domain knowledge. The strategic payoffs from the application
domains are captured in a heuristic payoff table by observing various finite strategy
constellations. Subsequently, the expected payoff for an arbitrary mix of strategies in
an infinite population can be approximated from the heuristic payoff table, and is
used in the context of the evolutionary dynamics. In poker, results are in line with
expert advice, even more so if exploration is accounted for in the evolutionary model.
Similarly, results in simulated double auctions confirm results from previous work. More
specifically, performance in double auctions does not increase monotonically with more
information about the future price development: traders with no information perform
at market average, while traders with little information are exploited by insiders with a
lot of information; this results in a J-curve for the value of information. If information
comes for free, insiders drive other traders extinct. If on the other hand information is
costly, less informed traders may prevail. This work provides a good basis to study the
resilience to exogenous events, like trader in- and outflow, that may further disturb the
system.

Overall, this dissertation contributes to the state-of-the-art in multi-agent reinforce-
ment learning in several ways: (1) a critical evaluation and improvement of the link
between Q-learning and its idealized dynamics enables a proof of convergence for the
variant Frequency Adjusted Q-learning, (2) the evolutionary framework is extended to
more realistic settings and enriched by new perspectives, and (3) application domains
demonstrate how practical insights can be derived from the theoretical models. Ty-
ing together tools from reinforcement learning, dynamical systems, evolutionary and
classical game theory, this dissertation lays out a formal framework for the analysis of
systems in which agents are learning against learning, paving the way for many viable
future research endeavors.
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Samenvatting

In dit proefschrift bestudeer ik computerprogramma’s (agenten) die samen leren te
coördineren of te concurreren. Er wordt hoofdzakelijk onderzocht hoe hun leerpro-
cessen elkaar bëınvloeden. Dergelijke adaptieve agenten spelen reeds een belangrijke
rol in onze maatschappij. Zo nemen geautomatiseerde agenten bijvoorbeeld al deel aan
de financiële handel en genereren in een aantal Amerikaanse markten reeds meer trans-
acties dan de mens. Ondanks de grootschalige toepassing is het voor de meerderheid van
leeralgoritmen enkel bewezen dat ze goed presteren als zij gëısoleerd optreden—zodra
een tweede agent invloed heeft op de omgeving of uitkomsten, zijn de meeste garanties
niet meer van toepassing. Mijn belangrijkste bijdragen zijn de uitbreiding en de toe-
passing van methodiek om te beoordelen in hoeverre optimaal gedrag in strategische
interacties door leeralgoritmen wordt benaderd. Het gedrag van deze algoritmen wordt
geformaliseerd op basis van stochastische en dynamische systemen, en hun korte en
lange termijn prestaties worden in het kader van de klassieke en evolutionaire spelthe-
orie besproken.
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Zusammenfassung

In dieser Dissertation werden Computerprogramme (Agenten) analysiert, die mit- und
gegeneinander lernen. Im Besonderen wird darauf eingegangen, wie sich die Lern-
prozesse der Agenten gegenseitig beeinflussen. Solche adaptive Agenten spielen schon
heute in verschiedenen Bereichen unseres Lebens eine ausschlaggebende Rolle, auch
wenn dies häufig übersehen wird; so nehmen z.B. Computer-Agenten an Finanzmärkten
teil und generieren in einigen US Märkten größere Transaktionsvolumen als mensch-
liche Händler. Für allein agierende lernende Agenten bzw. deren Lernverfahren können
Konvergenz zum optimalen Verhalten und dessen Stabilität häufig garantiert werden.
Solche Garantien sind für Systeme, bestehend aus mehreren, interagierenden, lernenden
Agenten, im Allgemeinen nicht übertragbar, da das optimale Verhalten (das Lernziel)
des einen Agenten vom Verhalten der anderen Agenten abhängt und sich fortwährend
ändern kann. In der vorliegenden Dissertation wird eine Methode entwickelt und ange-
wandt, die es erlaubt zu bewerten, inwiefern sich interagierende Lernverfahren an das
theoretisch erreichbare Optimalverhalten in strategischen Konflikten annähern. Das
Verhalten dieser Lernverfahren wird mit Hilfe von stochastischen und dynamischen
Systemen formal modelliert, und das Kurz- und Langzeitverhalten wird im Kontext
von klassischen und evolutionären spieltheoretischen Lösungansätzen diskutiert.

143





List of publications1

Haitham Bou Ammar, Karl Tuyls, and Michael Kaisers. Evolutionary Dynamics of Ant
Colony Optimization. In Ingo J. Timm and Christian Guttmann, editors, Multiagent
System Technologies. 10th German Conference, MATES 2012, pages 40–52. Lecture
Notes in Computer Science, Vol. 7598. Springer, 2012.

Daniel Hennes, Daan Bloembergen, Michael Kaisers, Karl Tuyls, and Simon Parsons.
Evolutionary Advantage of Foresight in Markets. In Proc. of the Genetic and Evol-
utionary Computation Conference (GECCO), pages 943–949, 2012. 91

Michael Kaisers, Daan Bloembergen, and Karl Tuyls. A Common Gradient in
Multi-agent Reinforcement Learning (Extended Abstract). In Conitzer, Winikoff,
Padgham, and van der Hoek, editors, Proc. of 11th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2012), pages 1393–1394. International Foundation
for AAMAS, 2012. 75

Michael Kaisers and Karl Tuyls. Multi-agent Learning and the Reinforcement Gradient.
In Massimo Cossentino, Michael Kaisers, Karl Tuyls, and Gerhard Weiss, editors,
Multi-Agent Systems. 9th European Workshop, EUMAS 2011, pages 145–159. Lecture
Notes in Computer Science, Vol. 7541. Springer, 2012. 75

Marcel Neumann, Karl Tuyls, and Michael Kaisers. Using Time as a Strategic Element
in Continuous Double Auctions. In Ingo J. Timm and Christian Guttmann, editors,
Multiagent System Technologies. 10th German Conference, MATES 2012, pages 106–
115. Lecture Notes in Computer Science, Vol. 7598. Springer, 2012.

Michael Wunder, Michael Kaisers, John Robert Yaros, and Michael Littman. A Frame-
work for Modeling Population Strategies by Depth of Reasoning. In Conitzer,
Winikoff, Padgham, and van der Hoek, editors, Proc. of 11th Int. Conf. on Autonom-
ous Agents and Multiagent Systems (AAMAS 2012), pages 947–954. International
Foundation for AAMAS, 2012.

Sjriek Alers, Daan Bloembergen, Daniel Hennes, Steven de Jong, Michael Kaisers,
Nyree Lemmens, Karl Tuyls, and Gerhard Weiss. Bee-inspired foraging in an em-
bodied swarm (Demonstration). In Tumer, Yolum, Sonenberg, and Stone, editors,

1 Within the domain of computer science, high impact conferences such as AAMAS or AAAI
are regarded comparable if not preferable to journals. For a scientific discussion see Research
Evaluation for Computer Science by Bertrand Meyer et al. in Communications of the ACM.

145



LIST OF PUBLICATIONS

Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2011), pages 1311–1312. International Foundation for AAMAS, 2011.

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Empirical and Theoretical Sup-
port for Lenient Learning (Extended Abstract). In Tumer, Yolum, Sonenberg, and
Stone, editors, Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2011), pages 1105–1106. International Foundation for AAMAS, 2011.
6, 55

Michael Kaisers and Karl Tuyls. FAQ-Learning in Matrix Games: Demonstrating Con-
vergence near Nash Equilibria, and Bifurcation of Attractors in the Battle of Sexes. In
Workshop on Interactive Decision Theory and Game Theory (IDTGT 2011). Assoc.
for the Advancement of Artif. Intel. (AAAI), 2011. 38, 53

Daniel Mescheder, Karl Tuyls, and Michael Kaisers. Opponent Modeling with POM-
DPs. In Proc. of 23nd Belgium-Netherlands Conf. on Artificial Intelligence (BNAIC
2011), pages 152–159. KAHO Sint-Lieven, Gent, 2011.

Michael Wunder, Michael Kaisers, J.R. Yaros, and Michael Littman. Using iterated
reasoning to predict opponent strategies. In Tumer, Yolum, Sonenberg, and Stone,
editors, Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pages 593–600. International Foundation for AAMAS, 2011.

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. A comparative study of multi-
agent reinforcement learning dynamics. In Proc. of 22nd Belgium-Netherlands Conf.
on Artificial Intelligence (BNAIC 2010), pages 11–18. University of Luxembourg,
2010a. 69, 70

Daan Bloembergen, Michael Kaisers, and Karl Tuyls. Lenient frequency adjusted
Q-learning. In Proc. of 22nd Belgium-Netherlands Conf. on Artificial Intelligence
(BNAIC 2010), pages 19–26. University of Luxembourg, 2010b. 69, 70

Daniel Hennes, Michael Kaisers, and Karl Tuyls. RESQ-learning in stochastic games.
In Adaptive and Learning Agents (ALA 2010) Workshop, 2010. 55, 68, 69

Michael Kaisers and Karl Tuyls. Frequency Adjusted Multi-agent Q-learning. In
van der Hoek, Kamina, Lespérance, Luck, and Sen, editors, Proc. of 9th Intl. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 309–315. In-
ternational Foundation for AAMAS, 2010a. 5, 38, 85

Michael Kaisers and Karl Tuyls. Replicator Dynamics for Multi-agent Learning - An
Orthogonal Approach. In Matthew E. Taylor and Karl Tuyls, editors, Adaptive
and Learning Agents. Second Workshop, ALA 2009, pages 49–59. Lecture Notes in
Computer Science, Vol. 5924. Springer, 2010b.

Michael Wunder, Michael Kaisers, Michael Littman, and John Robert Yaros. A Cog-
nitive Hierarchy Model Applied to the Lemonade Game. In Workshop on Interactive
Decision Theory and Game Theory (IDTGT 2010). Assoc. for the Advancement of
Artif. Intel. (AAAI), 2010.

146



LIST OF PUBLICATIONS

Michael Kaisers. Replicator Dynamics for Multi-agent Learning - An Orthogonal Ap-
proach. In Toon Calders, Karl Tuyls, and Mykola Pechenizkiy, editors, Proc. of the
21st Benelux Conference on Artificial Intelligence (BNAIC 2009), pages 113–120,
Eindhoven, 2009. 75

Michael Kaisers, Karl Tuyls, and Simon Parsons. An EvolutionaryModel of Multi-agent
Learning with a Varying Exploration Rate (Extended Abstract). In Decker, Sichman,
Sierra, and Castelfranchi, editors, Proc. of 8th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2009), pages 1255–1256. International Foundation for
AAMAS, 2009. 55, 94

Marc Ponsen, Karl Tuyls, Michael Kaisers, and Jan Ramon. An evolutionary game-
theoretic analysis of poker strategies. Entertainment Computing, 1(1):39–45, January
2009. 91

Michael Kaisers, Karl Tuyls, and Frank Thuijsman. Discovering the game in auctions.
In Proc. of 20th Belgian-Netherlands Conference on Artificial Intelligence (BNAIC
2008), pages 113–120. University of Twente, 2008a.

Michael Kaisers, Karl Tuyls, Frank Thuijsman, and Simon Parsons. Auction Analysis
by Normal Form Game Approximation. In Proc. of Int. Conf. on Web Intelligence
and Intelligent Agent Technology (WI-IAT 2008), pages 447–450. IEEE/WIC/ACM,
December 2008b. 62

Jaap H. van den Herik, Daniel Hennes, Michael Kaisers, Karl Tuyls, and Katja Ver-
beeck. Multi-agent learning dynamics: A survey. In Cooperative Information Agents
XI, LNAI, volume 4676, pages 36–56. Springer, 2007. 4

147





SIKS dissertation series

2009

1 Rasa Jurgelenaite (RUN) Symmetric Causal
Independence Models

2 Willem Robert van Hage (VU) Evaluating
Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for Evidence-
based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improving the
Quality of Organisational Policy Making using
Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Supply and
Demand for Knowledge Intensive Tasks -
Based on Knowledge, Cognition, and Quality

6 Muhammad Subianto (UU) Understanding
Classification

7 Ronald Poppe (UT) Discriminative Vision-
Based Recovery and Recognition of Human
Motion

8 Volker Nannen (VU) Evolutionary Agent-
Based Policy Analysis in Dynamic Environ-
ments

9 Benjamin Kanagwa (RUN) Design, Discovery
and Construction of Service-oriented Systems

10 Jan Wielemaker (UVA) Logic programming for
knowledge-intensive interactive applications

11 Alexander Boer (UVA) Legal Theory, Sources
of Law & the Semantic Web

12 Peter Massuthe (TUE) Humboldt-Universitaet
BerlinOperating Guidelines for Services

13 Steven de Jong (UM) Fairness in Multi-Agent
Systems

14 Maksym Korotkiy (VU) From ontology-enabled
services to service-enabled ontologies (making
ontologies work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UVA) Ontology Representa-
tion - Design Patterns and Ontologies that
Make Sense

16 Fritz Reul (UvT) New Architectures in Com-
puter Chess

17 Laurens van der Maaten (UvT) Feature Extrac-
tion from Visual Data

18 Fabian Groffen (CWI) Armada, An Evolving
Database System

19 Valentin Robu (CWI) Modeling Preferences,
Strategic Reasoning and Collaboration in
Agent-Mediated Electronic Markets

20 Bob van der Vecht (UU) Adjustable Autonomy:
Controling Influences on Decision Making

21 Stijn Vanderlooy (UM) Ranking and Reliable
Classification

22 Pavel Serdyukov (UT) Search For Expertise:
Going beyond direct evidence

23 Peter Hofgesang (VU) Modelling Web Usage in
a Changing Environment

24 Annerieke Heuvelink (VU) Cognitive Models
for Training Simulations

25 Alex van Ballegooij (CWI) RAM: Array Data-
base Management through Relational Mapping

26 Fernando Koch (UU) An Agent-Based Model
for the Development of Intelligent Mobile Ser-
vices

27 Christian Glahn (OU) Contextual Support of
social Engagement and Reflection on the Web

28 Sander Evers (UT) Sensor Data Management
with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven Se-
mantic Integration of Service-Oriented Applic-
ations

30 Marcin Zukowski (CWI) Balancing vectorized
query execution with bandwidth-optimized stor-
age

31 Sofiya Katrenko (UVA) A Closer Look at
Learning Relations from Text

149



SIKS DISSERTATION SERIES

32 Rik Farenhorst and Remco de Boer (VU) Ar-
chitectural Knowledge Management: Support-
ing Architects and Auditors

33 Khiet Truong (UT) How Does Real Affect Af-
fect Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in Software
Product Management: An Incremental Method
Engineering Approach

35 Wouter Koelewijn (UL) Privacy en
Politiegegevens; Over geautomatiseerde norm-
atieve informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support for
Learners in Learning Networks

37 Hendrik Drachsler (OUN) Navigation Support
for Learners in Informal Learning Networks

38 Riina Vuorikari (OU) Tags and self-
organisation: a metadata ecology for learning
resources in a multilingual context

39 Christian Stahl (TUE, Humboldt-Universitaet
zu Berlin) Service Substitution – A Behavioral
Approach Based on Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial Lan-
guage Learning: Investigations into the Geo-
metry of Language

41 Igor Berezhnyy (UvT) Digital Analysis of
Paintings

42 Toine Bogers (UvT) Recommender Systems for
Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT) Finding
Multi-step Attacks in Computer Networks us-
ing Heuristic Search and Mobile Ambients

44 Roberto Santana Tapia (UT) Assessing
Business-IT Alignment in Networked Organiz-
ations

45 Jilles Vreeken (UU) Making Pattern Mining
Useful

46 Loredana Afanasiev (UvA) Querying XML:
Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns that Mat-
ter

2 Ingo Wassink (UT) Work flows in Life Science

3 Joost Geurts (CWI) A Document Engineering
Model and Processing Framework for Multime-
dia documents

4 Olga Kulyk (UT) Do You Know What I Know?
Situational Awareness of Co-located Teams in
Multidisplay Environments

5 Claudia Hauff (UT) Predicting the Effective-
ness of Queries and Retrieval Systems

6 Sander Bakkes (UvT) Rapid Adaptation of
Video Game AI

7 Wim Fikkert (UT) Gesture interaction at a
Distance

8 Krzysztof Siewicz (UL) Towards an Improved
Regulatory Framework of Free Software. Pro-
tecting user freedoms in a world of software
communities and eGovernments

9 Hugo Kielman (UL) A Politiele gegevensver-
werking en Privacy, Naar een effectieve waar-
borging

10 Rebecca Ong (UL) Mobile Communication and
Protection of Children

11 Adriaan Ter Mors (TUD) The world according
to MARP: Multi-Agent Route Planning

12 Susan van den Braak (UU) Sensemaking soft-
ware for crime analysis

13 Gianluigi Folino (RUN) High Performance
Data Mining using Bio-inspired techniques

14 Sander van Splunter (VU) Automated Web
Service Reconfiguration

15 Lianne Bodenstaff (UT)Managing Dependency
Relations in Inter-Organizational Models

16 Sicco Verwer (TUD) Efficient Identification of
Timed Automata, theory and practice

17 Spyros Kotoulas (VU) Scalable Discovery of
Networked Resources: Algorithms, Infrastruc-
ture, Applications

18 Charlotte Gerritsen (VU) Caught in the Act:
Investigating Crime by Agent-Based Simula-
tion

19 Henriette Cramer (UvA) People’s Responses to
Autonomous and Adaptive Systems

20 Ivo Swartjes (UT) Whose Story Is It Anyway?
How Improv Informs Agency and Authorship
of Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware data
management by means of data degradation

22 Michiel Hildebrand (CWI) End-user Support
for Access to Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Structure of
Emotions

24 Dmytro Tykhonov (TUD) Designing Generic
and Efficient Negotiation Strategies

25 Zulfiqar Ali Memon (VU) Modelling Human-
Awareness for Ambient Agents: A Human
Mindreading Perspective

150



SIKS DISSERTATION SERIES

26 Ying Zhang (CWI) XRPC: Efficient Dis-
tributed Query Processing on Heterogeneous
XQuery Engines

27 Marten Voulon (UL) Automatisch contracteren

28 Arne Koopman (UU) Characteristic Relational
Patterns

29 Stratos Idreos (CWI) Database Cracking: To-
wards Auto-tuning Database Kernels

30 Marieke van Erp (UvT) Accessing Natural His-
tory - Discoveries in data cleaning, structur-
ing, and retrieval

31 Victor de Boer (UVA) Ontology Enrichment
from Heterogeneous Sources on the Web

32 Marcel Hiel (UvT) An Adaptive Service Ori-
ented Architecture: Automatically solving In-
teroperability Problems

33 Robin Aly (UT) Modeling Representation Un-
certainty in Concept-Based Multimedia Re-
trieval

34 Teduh Dirgahayu (UT) Interaction Design in
Service Compositions

35 Dolf Trieschnigg (UT) Proof of Concept:
Concept-based Biomedical Information Re-
trieval

36 Jose Janssen (OU) Paving the Way for Lifelong
Learning; Facilitating competence development
through a learning path specification

37 Niels Lohmann (TUE) Correctness of services
and their composition

38 Dirk Fahland (TUE) From Scenarios to com-
ponents

39 Ghazanfar Farooq Siddiqui (VU) Integrative
modeling of emotions in virtual agents

40 Mark van Assem (VU) Converting and Integ-
rating Vocabularies for the Semantic Web

41 Guillaume Chaslot (UM) Monte-Carlo Tree
Search

42 Sybren de Kinderen (VU) Needs-driven service
bundling in a multi-supplier setting - the com-
putational e3-service approach

43 Peter van Kranenburg (UU) A Computational
Approach to Content-Based Retrieval of Folk
Song Melodies

44 Pieter Bellekens (TUE) An Approach towards
Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the
Television Domain

45 Vasilios Andrikopoulos (UvT) A theory and
model for the evolution of software services

46 Vincent Pijpers (VU) e3alignment: Exploring
Inter-Organizational Business-ICT Alignment

47 Chen Li (UT) Mining Process Model Variants:
Challenges, Techniques, Examples

48 Jahn-Takeshi Saito (UM) Solving difficult game
positions

49 Bouke Huurnink (UVA) Search in Audiovisual
Broadcast Archives

50 Alia Khairia Amin (CWI) Understanding and
supporting information seeking tasks in mul-
tiple sources

51 Peter-Paul van Maanen (VU) Adaptive Sup-
port for Human-Computer Teams: Exploring
the Use of Cognitive Models of Trust and At-
tention

52 Edgar Meij (UVA) Combining Concepts and
Language Models for Information Access

2011

1 Botond Cseke (RUN) Variational Algorithms
for Bayesian Inference in Latent Gaussian
Models

2 Nick Tinnemeier (UU) Work flows in Life Sci-
ence

3 Jan Martijn van der Werf (TUE) Composi-
tional Design and Verification of Component-
Based Information Systems

4 Hado van Hasselt (UU) Insights in Reinforce-
ment Learning; Formal analysis and empirical
evaluation of temporal-difference learning al-
gorithms

5 Base van der Raadt (VU) Enterprise Architec-
ture Coming of Age - Increasing the Perform-
ance of an Emerging Discipline.

6 Yiwen Wang (TUE) Semantically-Enhanced
Recommendations in Cultural Heritage

7 Yujia Cao (UT) Multimodal Information
Presentation for High Load Human Computer
Interaction

8 Nieske Vergunst (UU) BDI-based Generation
of Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile Me-
dia for Learning

10 Bart Bogaert (UvT) Cloud Content Conten-
tion

11 Dhaval Vyas (UT) Designing for Awareness:
An Experience-focused HCI Perspective

12 Carmen Bratosin (TUE) Grid Architecture for
Distributed Process Mining

151



SIKS DISSERTATION SERIES

13 Xiaoyu Mao (UvT) Airport under Control.
Multiagent Scheduling for Airport Ground
Handling

14 Milan Lovric (EUR) Behavioral Finance and
Agent-Based Artificial Markets

15 Marijn Koolen (UvA) The Meaning of Struc-
ture: the Value of Link Evidence for Informa-
tion Retrieval

16 Maarten Schadd (UM) Selective Search in
Games of Different Complexity

17 Jiyin He (UVA) Exploring Topic Structure: Co-
herence, Diversity and Relatedness

18 Marc Ponsen (UM) Strategic Decision-Making
in complex games

19 Ellen Rusman (OU) The Mind’s Eye on Per-
sonal Profiles

20 Qing Gu (VU) Guiding service-oriented soft-
ware engineering - A view-based approach

21 Linda Terlouw (TUD) Modularization and Spe-
cification of Service-Oriented Systems

22 Junte Zhang (UVA) System Evaluation of
Archival Description and Access

23 Wouter Weerkamp (UVA) Finding People and
their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior Gener-
ation for Interpersonal Coordination with Vir-
tual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VU) Analysis
and Validation of Models for Trust Dynamics

26 Matthijs Aart Pontier (VU) Virtual Agents for
Human Communication - Emotion Regulation
and Involvement-Distance Trade-Offs in Em-
bodied Conversational Agents and Robots

27 Aniel Bhulai (VU) Dynamic website optim-
ization through autonomous management of
design patterns

28 Rianne Kaptein (UVA) Effective Focused Re-
trieval by Exploiting Query Context and Doc-
ument Structure

29 Faisal Kamiran (TUE) Discrimination-aware
Classification

30 Egon van den Broek (UT) Affective Signal Pro-
cessing (ASP): Unraveling the mystery of emo-
tions

31 Ludo Waltman (EUR) Computational and
Game-Theoretic Approaches for Modeling
Bounded Rationality

32 Nees-Jan van Eck (EUR) Methodological Ad-
vances in Bibliometric Mapping of Science

33 Tom van der Weide (UU) Arguing to Motivate
Decisions

34 Paolo Turrini (UU) Strategic Reasoning in In-
terdependence: Logical and Game-theoretical
Investigations

35 Maaike Harbers (UU) Explaining Agent Beha-
vior in Virtual Training

36 Erik van der Spek (UU) Experiments in serious
game design: a cognitive approach

37 Adriana Birlutiu (RUN) Machine Learning
for Pairwise Data, Applications for Preference
Learning and Supervised Network Inference

38 Nyree Lemmens (UM) Bee-inspired Distributed
Optimization

39 Joost Westra (UU) Organizing Adaptation us-
ing Agents in Serious Games

40 Viktor Clerc (VU) Architectural Knowledge
Management in Global Software Development

41 Luan Ibraimi (UT) Cryptographically Enforced
Distributed Data Access Control

42 Michal Sindlar (UU) Explaining Behavior
through Mental State Attribution

43 Henk van der Schuur (UU) Process Improve-
ment through Software Operation Knowledge

44 Boris Reuderink (UT) Robust Brain-Computer
Interfaces

45 Herman Stehouwer (UvT) Statistical Language
Models for Alternative Sequence Selection

46 Beibei Hu (TUD) Towards Contextualized In-
formation Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work

47 Azizi Bin Ab Aziz (VU) Exploring Computa-
tional Models for Intelligent Support of Per-
sons with Depression

48 Mark Ter Maat (UT) Response Selection and
Turn-taking for a Sensitive Artificial Listening
Agent

49 Andreea Niculescu (UT) Conversational inter-
faces for task-oriented spoken dialogues: design
aspects influencing interaction quality

2012

1 Terry Kakeeto (UvT) Relationship Marketing
for SMEs in Uganda

2 Muhammad Umair (VU) Adaptivity, emotion,
and Rationality in Human and Ambient Agent
Models

152



SIKS DISSERTATION SERIES

3 Adam Vanya (VU) Supporting Architecture
Evolution by Mining Software Repositories

4 Jurriaan Souer (UU) Development of Content
Management System-based Web Applications

5 Marijn Plomp (UU) Maturing Interorganisa-
tional Information Systems

6 Wolfgang Reinhardt (OU) Awareness Support
for Knowledge Workers in Research Networks

7 Rianne van Lambalgen (VU) When the Going
Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Con-
ditions

8 Gerben de Vries (UVA) Kernel Methods for
Vessel Trajectories

9 Ricardo Neisse (UT) Trust and Privacy Man-
agement Support for Context-Aware Service
Platforms

10 David Smits (TUE) Towards a Generic Dis-
tributed Adaptive Hypermedia Environment

11 J.C.B. Rantham Prabhakara (TUE) Process
Mining in the Large: Preprocessing, Discovery,
and Diagnostics

12 Kees van der Sluijs (TUE) Model Driven
Design and Data Integration in Semantic Web
Information Systems

13 Suleman Shahid (UvT) Fun and Face: Explor-
ing non-verbal expressions of emotion during
playful interactions

14 Evgeny Knutov (TUE) Generic Adaptation
Framework for Unifying Adaptive Web-based
Systems

15 Natalie van der Wal (VU) Social Agents.
Agent-Based Modelling of Integrated Internal
and Social Dynamics of Cognitive and Affect-
ive Processes.

16 Fiemke Both (VU) Helping people by under-
standing them - Ambient Agents supporting
task execution and depression treatment

17 Amal Elgammal (UvT) Towards a Compre-
hensive Framework for Business Process Com-
pliance

18 Eltjo Poort (VU) Improving Solution Archi-
tecting Practices

19 Helen Schonenberg (TUE) What’s Next? Op-
erational Support for Business Process Execu-
tion

20 Ali Bahramisharif (RUN) Covert Visual Spa-
tial Attention, a Robust Paradigm for Brain-
Computer Interfacing

21 Roberto Cornacchia (TUD) Querying Sparse
Matrices for Information Retrieval

22 Thijs Vis (UvT) Intelligence, politie en vei-
ligheidsdienst: verenigbare grootheden?

23 Christian Muehl (UT) Toward Affective Brain-
Computer Interfaces: Exploring the Neuro-
physiology of Affect during Human Media In-
teraction

24 Laurens van der Werff (UT) Evaluation of
Noisy Transcripts for Spoken Document Re-
trieval

25 Silja Eckartz (UT) Managing the Business
Case Development in Inter-Organizational IT
Projects: A Methodology and its Application

26 Emile de Maat (UVA) Making Sense of Legal
Text

27 Hayrettin Gurkok (UT) Mind the Sheep! User
Experience Evaluation & Brain-Computer In-
terface Games

28 Nancy Pascall (UvT) Engendering Technology
Empowering Women

29 Almer Tigelaar (UT) Peer-to-Peer Information
Retrieval

30 Alina Pommeranz (TUD) Designing Human-
Centered Systems for Reflective Decision Mak-
ing

31 Emily Bagarukayo (RUN) A Learning by Con-
struction Approach for Higher Order Cognitive
Skills Improvement, Building Capacity and In-
frastructure

32 Wietske Visser (TUD) Qualitative multi-
criteria preference representation and reason-
ing

33 Rory Sie (OUN) Coalitions in Cooperation
Networks (COCOON)

34 Pavol Jancura (RUN) Evolutionary analysis in
PPI networks and applications

35 Evert Haasdijk (VU) Never Too Old To Learn
– On-line Evolution of Controllers in Swarm-
and Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and Eval-
uation of Collaborative Modeling Processes

37 Agnes Nakakawa (RUN) A Collaboration Pro-
cess for Enterprise Architecture Creation

38 Selmar Smit (VU) Parameter Tuning and Sci-
entific Testing in Evolutionary Algorithms

39 Hassan Fatemi (UT) Risk-aware design of
value and coordination networks

153



SIKS DISSERTATION SERIES

40 Agus Gunawan (UvT) Information Access for
SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Patterns
for Learning

42 Dominique Verpoorten (OU) Reflection Amp-
lifiers in self-regulated Learning

43 (Withdrawn)

44 Anna Tordai (VU) On Combining Alignment
Techniques

45 Benedikt Kratz (UvT) A Model and Language
for Business-aware Transactions

46 Simon Carter (UVA) Exploration and Exploit-
ation of Multilingual Data for Statistical Ma-
chine Translation

47 Manos Tsagkias (UVA) A Model and Language
for Business-aware Transactions

48 Jorn Bakker (TUE) Handling Abrupt Changes
in Evolving Time-series Data

49 Michael Kaisers (UM) Learning against Learn-
ing - Evolutionary Dynamics of Reinforcement
Learning Algorithms in Strategic Interactions

154





“In this dissertation I study computer programs (agents) that learn to coordinate or 
to compete and investigate how their learning processes in!uence each other. Such 
adaptive agents already take vital roles behind the scenes of our society, e.g., 
automated agents participate in high frequency "nancial trading and create more 
transactions than human traders in some US markets. Despite their widespread 
application, many machine learning algorithms only have proven performance 
guarantees if they act alone; as soon as a second agent in!uences the outcomes most 
guarantees are invalid. My main contributions are the extension and application of 
the methodology to assess how closely algorithms approximate optimal behavior in 
strategic interactions. #e behavior of these algorithms is formalized using models of 
stochastic and dynamical systems, and their short and long-term performance is 
discussed in terms of classical and evolutionary game theoretic solution concepts.”

In a nationwide competition, the Netherlands Organisation for Scienti!c 
Research (NWO) awarded him a TopTalent 2008 grant for his PhD research. 
In September 2008, he commenced his PhD position at Eindhoven University 
of Technology. From August 2009, the project continued at Maastricht Univer-
sity. He intensi!ed his international research experience through a three-month 
research visit to Prof. dr. Michael Littman at Rutgers, State University of New 
Jersey, and published at various peer-reviewed workshops, conferences and 
journals. "is dissertation coherently summarizes his PhD research.

Michael Kaisers graduated from Maastricht University with 
a BSc in Knowledge Engineering in 2007 and a MSc in 
Arti!cial Intelligence in 2008. He earned the honor summa 
cum laude in both cases, while abbreviating the three-years 
bachelor’s program to two years and complementing his 
master’s program by an extra-curricular four-month 
research visit to Prof. dr. Simon Parsons at Brooklyn 
College, City University of New York. 

6933107894619
 

ISBN 978-94-6169-331-0


	Front cover
	Preface
	Contents
	Introduction
	Motivation and scope
	Related work
	Problem statement
	Research questions
	Contributions and structure of this dissertation
	Relation to published work

	Background
	Reinforcement learning
	The multi-armed bandit problem and regret
	Markov decision processes
	Stochastic games

	Reinforcement-learning algorithms
	Cross learning
	Regret minimization
	Q-learning

	Reinforcement learning in strategic interactions
	Challenges of multi-agent reinforcement learning
	Multi-agent reinforcement learning

	Game theory and strategic interactions
	Classical game theory
	Evolutionary game theory
	Real payoffs and the heuristic payoff table

	Dynamical systems of multi-agent learning
	Cross learning and the replicator dynamics
	Learning dynamics of regret minimization
	An idealized model of Q-learning
	Dynamical systems of gradient ascent

	Summary and limitations of the state of the art

	Frequency Adjusted Q-learning
	Discrepancy between Q-learning and its idealized model
	Implementing the idealized model of Q-learning
	The algorithm Frequency Adjusted Q-learning
	Experiments and results
	Discussion

	Convergence in two-action two-player games
	Preliminaries
	Proof of convergence
	Experiments
	Discussion

	Summary

	Extending the dynamical systems framework
	Time-dependent exploration rates in Q-learning
	The time derivative of softmax activation
	Frequency Adjusted Q-learning with varying exploration
	Designing appropriate temperature functions
	Experiments in auctions
	Discussion

	Learning dynamics in stochastic games
	Multi-state Q-value dynamics
	Multi-state policy dynamics
	Dynamics of SARSA
	Networks of learning algorithms

	Lenient learning in cooperative games
	Lenient Frequency Adjusted Q-learning
	Experiments and results
	Discussion

	Summary

	New perspectives
	An orthogonal visualization of learning dynamics
	Method
	Experiments
	Discussion

	Reinforcement learning as stochastic gradient ascent
	Evolutionary dynamics of reinforcement learning
	Similarities in two-player two-action games
	Generalization to normal form games
	Discussion

	Summary

	Applications
	The value of information in auctions
	Related work
	Market model
	Trading strategies
	Evaluation of selected information distributions
	Evolutionary analysis
	Discussion

	Meta strategies in poker
	Introduction
	Background
	Methodology
	Experiments and results
	Discussion

	Summary

	Conclusions
	Answers to the research questions
	Contributions to multi-agent learning agendas
	Limitations of the methodology and future work

	Bibliography
	List of figures
	List of tables
	Notation
	Summary
	Samenvatting
	Zusammenfassung
	List of publications
	SIKS dissertation series
	Back cover

